Suppose a triangle has two sides of length 3 and 4, and the angle between these two sides is [tex]60^{\circ}[/tex]. What is the length of the third side of the triangle?

A. 3
B. [tex]\sqrt{13}[/tex]
C. [tex]4 \sqrt{3}[/tex]
D. [tex]\sqrt{3}[/tex]



Answer :

To determine the length of the third side of a triangle when you have two sides and the included angle, we use the Law of Cosines. The Law of Cosines states:

[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(C) \][/tex]

Given:
- [tex]\( a = 3 \)[/tex]
- [tex]\( b = 4 \)[/tex]
- [tex]\( C = 60^\circ \)[/tex]

We need to calculate side [tex]\( c \)[/tex].

Firstly, we convert the angle [tex]\( 60^\circ \)[/tex] to radians because the cosine function commonly uses radian input:

[tex]\[ 60^\circ = \frac{\pi}{3} \text{ radians} \][/tex]

Next, we apply these values to the Law of Cosines formula. Plugging them in:

[tex]\[ c^2 = 3^2 + 4^2 - 2 \cdot 3 \cdot 4 \cdot \cos\left(\frac{\pi}{3}\right) \][/tex]

We know that:

[tex]\[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \][/tex]

So substituting this in we get:

[tex]\[ c^2 = 9 + 16 - 2 \cdot 3 \cdot 4 \cdot \frac{1}{2} \][/tex]
[tex]\[ c^2 = 25 - 12 \][/tex]
[tex]\[ c^2 = 13 \][/tex]

Finally, taking the square root of both sides to solve for [tex]\( c \)[/tex]:

[tex]\[ c = \sqrt{13} \][/tex]

Therefore, the length of the third side is:

[tex]\[ \boxed{\sqrt{13}} \][/tex]

So, the correct answer is:
B. [tex]\(\sqrt{13}\)[/tex]