What is the slope of a trend line that passes through the points [tex](-3, 3)[/tex] and [tex](18, 26)[/tex]?

A. [tex]\frac{15}{29}[/tex]

B. [tex]\frac{21}{23}[/tex]

C. [tex]\frac{23}{21}[/tex]

D. [tex]\frac{29}{15}[/tex]



Answer :

To find the slope of the trend line that passes through the points [tex]\((-3, 3)\)[/tex] and [tex]\((18, 26)\)[/tex], we use the slope formula for a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:

[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Given the coordinates:

[tex]\[ (x_1, y_1) = (-3, 3) \][/tex]
[tex]\[ (x_2, y_2) = (18, 26) \][/tex]

Plugging these values into the slope formula:

[tex]\[ \text{slope} = \frac{26 - 3}{18 - (-3)} \][/tex]
[tex]\[ \text{slope} = \frac{26 - 3}{18 + 3} \][/tex]
[tex]\[ \text{slope} = \frac{23}{21} \][/tex]

So, the slope of the trend line that passes through the points [tex]\((-3, 3)\)[/tex] and [tex]\((18, 26)\)[/tex] is

[tex]\[ \boxed{\frac{23}{21}} \][/tex]