To find the slope of the trend line that passes through the points [tex]\((-3, 3)\)[/tex] and [tex]\((18, 26)\)[/tex], we use the slope formula for a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[
\text{slope} = \frac{y_2 - y_1}{x_2 - x_1}
\][/tex]
Given the coordinates:
[tex]\[
(x_1, y_1) = (-3, 3)
\][/tex]
[tex]\[
(x_2, y_2) = (18, 26)
\][/tex]
Plugging these values into the slope formula:
[tex]\[
\text{slope} = \frac{26 - 3}{18 - (-3)}
\][/tex]
[tex]\[
\text{slope} = \frac{26 - 3}{18 + 3}
\][/tex]
[tex]\[
\text{slope} = \frac{23}{21}
\][/tex]
So, the slope of the trend line that passes through the points [tex]\((-3, 3)\)[/tex] and [tex]\((18, 26)\)[/tex] is
[tex]\[
\boxed{\frac{23}{21}}
\][/tex]