Answer :
Problem Solution:
To simplify the expression [tex]\(\frac{(2x + 10)^4}{(x + 5)^3}\)[/tex], we will break it down step by step.
### Step-by-Step Solution:
1. Factor the numerator and the denominator:
[tex]\[ (2x + 10)^4 = [(2x + 10)(2x + 10)(2x + 10)(2x + 10)] \][/tex]
[tex]\[ (x + 5)^3 = [(x + 5)(x + 5)(x + 5)] \][/tex]
Notice that [tex]\(2x + 10\)[/tex] can be rewritten as [tex]\(2(x + 5)\)[/tex]. So, let’s rewrite the numerator:
[tex]\[ (2(x + 5))^4 \][/tex]
2. Simplify the exponent:
By applying the power rule [tex]\((ab)^n = a^n b^n\)[/tex]:
[tex]\[ (2(x + 5))^4 = 2^4 \cdot (x + 5)^4 \][/tex]
3. Simplify the powers:
Calculate [tex]\(2^4\)[/tex]:
[tex]\[ 2^4 = 16 \][/tex]
So, the numerator simplifies to:
[tex]\[ 16(x + 5)^4 \][/tex]
4. Combine the simplified numerator with the denominator:
[tex]\[ \frac{16(x + 5)^4}{(x + 5)^3} \][/tex]
5. Simplify the fraction:
We know that [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]. Applying this:
[tex]\[ \frac{(x + 5)^4}{(x + 5)^3} = (x + 5)^{4-3} = (x + 5)^1 = x + 5 \][/tex]
6. Put it all together:
[tex]\[ 16 \cdot (x + 5) \][/tex]
Therefore, the simplified expression is:
[tex]\[ 16(x + 5) \][/tex]
Let’s expand this expression to show the final answer:
[tex]\[ 16(x + 5) = 16x + 80 \][/tex]
So the simplified form of the given expression [tex]\(\frac{(2x + 10)^4}{(x + 5)^3}\)[/tex] is:
[tex]\[ \boxed{16x + 80} \][/tex]
To simplify the expression [tex]\(\frac{(2x + 10)^4}{(x + 5)^3}\)[/tex], we will break it down step by step.
### Step-by-Step Solution:
1. Factor the numerator and the denominator:
[tex]\[ (2x + 10)^4 = [(2x + 10)(2x + 10)(2x + 10)(2x + 10)] \][/tex]
[tex]\[ (x + 5)^3 = [(x + 5)(x + 5)(x + 5)] \][/tex]
Notice that [tex]\(2x + 10\)[/tex] can be rewritten as [tex]\(2(x + 5)\)[/tex]. So, let’s rewrite the numerator:
[tex]\[ (2(x + 5))^4 \][/tex]
2. Simplify the exponent:
By applying the power rule [tex]\((ab)^n = a^n b^n\)[/tex]:
[tex]\[ (2(x + 5))^4 = 2^4 \cdot (x + 5)^4 \][/tex]
3. Simplify the powers:
Calculate [tex]\(2^4\)[/tex]:
[tex]\[ 2^4 = 16 \][/tex]
So, the numerator simplifies to:
[tex]\[ 16(x + 5)^4 \][/tex]
4. Combine the simplified numerator with the denominator:
[tex]\[ \frac{16(x + 5)^4}{(x + 5)^3} \][/tex]
5. Simplify the fraction:
We know that [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]. Applying this:
[tex]\[ \frac{(x + 5)^4}{(x + 5)^3} = (x + 5)^{4-3} = (x + 5)^1 = x + 5 \][/tex]
6. Put it all together:
[tex]\[ 16 \cdot (x + 5) \][/tex]
Therefore, the simplified expression is:
[tex]\[ 16(x + 5) \][/tex]
Let’s expand this expression to show the final answer:
[tex]\[ 16(x + 5) = 16x + 80 \][/tex]
So the simplified form of the given expression [tex]\(\frac{(2x + 10)^4}{(x + 5)^3}\)[/tex] is:
[tex]\[ \boxed{16x + 80} \][/tex]