Problem 8

Assuming that [tex] x \neq -5 [/tex], simplify [tex] \frac{(2x + 10)^4}{(x + 5)^3} [/tex].

Your answer "16" is incorrect. Please try again.

---

Problem 9

Consider the expression [tex] 6x^3 + 9x^2 + 4x + 7 [/tex].



Answer :

Problem Solution:

To simplify the expression [tex]\(\frac{(2x + 10)^4}{(x + 5)^3}\)[/tex], we will break it down step by step.

### Step-by-Step Solution:

1. Factor the numerator and the denominator:
[tex]\[ (2x + 10)^4 = [(2x + 10)(2x + 10)(2x + 10)(2x + 10)] \][/tex]
[tex]\[ (x + 5)^3 = [(x + 5)(x + 5)(x + 5)] \][/tex]

Notice that [tex]\(2x + 10\)[/tex] can be rewritten as [tex]\(2(x + 5)\)[/tex]. So, let’s rewrite the numerator:
[tex]\[ (2(x + 5))^4 \][/tex]

2. Simplify the exponent:

By applying the power rule [tex]\((ab)^n = a^n b^n\)[/tex]:
[tex]\[ (2(x + 5))^4 = 2^4 \cdot (x + 5)^4 \][/tex]

3. Simplify the powers:

Calculate [tex]\(2^4\)[/tex]:
[tex]\[ 2^4 = 16 \][/tex]
So, the numerator simplifies to:
[tex]\[ 16(x + 5)^4 \][/tex]

4. Combine the simplified numerator with the denominator:
[tex]\[ \frac{16(x + 5)^4}{(x + 5)^3} \][/tex]

5. Simplify the fraction:

We know that [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]. Applying this:
[tex]\[ \frac{(x + 5)^4}{(x + 5)^3} = (x + 5)^{4-3} = (x + 5)^1 = x + 5 \][/tex]

6. Put it all together:
[tex]\[ 16 \cdot (x + 5) \][/tex]

Therefore, the simplified expression is:
[tex]\[ 16(x + 5) \][/tex]

Let’s expand this expression to show the final answer:
[tex]\[ 16(x + 5) = 16x + 80 \][/tex]

So the simplified form of the given expression [tex]\(\frac{(2x + 10)^4}{(x + 5)^3}\)[/tex] is:
[tex]\[ \boxed{16x + 80} \][/tex]