To solve the expression [tex]\(3x^3 - 2x^2 + 7y\)[/tex] given [tex]\(x = -3\)[/tex] and [tex]\(y = -7\)[/tex], we'll follow these steps:
1. Substitute the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
Substitute [tex]\(x = -3\)[/tex] and [tex]\(y = -7\)[/tex] into the expression.
2. Calculate [tex]\(3x^3\)[/tex]:
[tex]\[
3(-3)^3 = 3 \times (-27) = -81
\][/tex]
3. Calculate [tex]\(-2x^2\)[/tex]:
[tex]\[
-2(-3)^2 = -2 \times 9 = -18
\][/tex]
4. Calculate [tex]\(7y\)[/tex]:
[tex]\[
7(-7) = -49
\][/tex]
5. Add all the calculated terms together:
[tex]\[
-81 + (-18) + (-49) = -81 - 18 - 49
\][/tex]
6. Perform the addition step-by-step for clarity:
[tex]\[
-81 - 18 = -99
\][/tex]
[tex]\[
-99 - 49 = -148
\][/tex]
Therefore, the result of evaluating the expression [tex]\(3x^3 - 2x^2 + 7y\)[/tex] with [tex]\(x = -3\)[/tex] and [tex]\(y = -7\)[/tex] is [tex]\(-148\)[/tex].
So, the correct answer is:
[tex]\[
\boxed{-148}
\][/tex]