Evaluate: [tex]3x^3 - 2x^2 + 7y[/tex] for [tex]x = -3[/tex] and [tex]y = -7[/tex]

A. [tex]-148[/tex]

B. [tex]-112[/tex]

C. [tex]14[/tex]

D. [tex]112[/tex]



Answer :

To solve the expression [tex]\(3x^3 - 2x^2 + 7y\)[/tex] given [tex]\(x = -3\)[/tex] and [tex]\(y = -7\)[/tex], we'll follow these steps:

1. Substitute the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
Substitute [tex]\(x = -3\)[/tex] and [tex]\(y = -7\)[/tex] into the expression.

2. Calculate [tex]\(3x^3\)[/tex]:
[tex]\[ 3(-3)^3 = 3 \times (-27) = -81 \][/tex]

3. Calculate [tex]\(-2x^2\)[/tex]:
[tex]\[ -2(-3)^2 = -2 \times 9 = -18 \][/tex]

4. Calculate [tex]\(7y\)[/tex]:
[tex]\[ 7(-7) = -49 \][/tex]

5. Add all the calculated terms together:
[tex]\[ -81 + (-18) + (-49) = -81 - 18 - 49 \][/tex]

6. Perform the addition step-by-step for clarity:
[tex]\[ -81 - 18 = -99 \][/tex]
[tex]\[ -99 - 49 = -148 \][/tex]

Therefore, the result of evaluating the expression [tex]\(3x^3 - 2x^2 + 7y\)[/tex] with [tex]\(x = -3\)[/tex] and [tex]\(y = -7\)[/tex] is [tex]\(-148\)[/tex].

So, the correct answer is:
[tex]\[ \boxed{-148} \][/tex]