Given the following table of values for [tex]\( f(x) \)[/tex], find [tex]\( f(8) \)[/tex].

[tex]\[
\begin{array}{ccccccc}
x & -2 & 0 & 1 & 3 & 5 & 8 \\
\hline
f(x) & 11 & 4 & 8 & 8 & -4 & 5
\end{array}
\][/tex]

Provide your answer below:
[tex]\[
f(8) = \boxed{5}
\][/tex]



Answer :

To find the value of [tex]\( f(8) \)[/tex] using the given table of values, follow these steps:

1. Identify the value of [tex]\( x \)[/tex] we are interested in: In this case, we want to find [tex]\( f(8) \)[/tex].

2. Locate the corresponding value in the table:
- Look for the row where [tex]\( x = 8 \)[/tex].
- The table is given as:
[tex]\[ \begin{tabular}{ccccccc} $x$ & -2 & 0 & 1 & 3 & 5 & 8 \\ \hline $f(x)$ & 11 & 4 & 8 & 8 & -4 & 5 \end{tabular} \][/tex]

3. Find the value of [tex]\( f(x) \)[/tex] when [tex]\( x = 8 \)[/tex]:
- When [tex]\( x = 8 \)[/tex], the corresponding value [tex]\( f(8) \)[/tex] in the table is 5.

Therefore,
[tex]\[ f(8) = 5 \][/tex]

So, the value of [tex]\( f(8) \)[/tex] is [tex]\( 5 \)[/tex].