Simplify by looking for like terms:

[tex]6a^2b - 2ba^2 + 3ab - 2ba[/tex]

A. [tex]4a^2b + ab[/tex]

B. [tex]4a^2b + 5ab[/tex]

C. [tex]6a^2b - 2ba^2 + 3ab - 2ba[/tex]

D. [tex]6a^2b - 2ba^2 + ab[/tex]



Answer :

Sure! Let's simplify the expression [tex]\( 6a^2b - 2ba^2 + 3ab - 2ba \)[/tex] step by step by combining like terms.

1. Rewrite the expression:

The given expression is:
[tex]\[ 6a^2b - 2ba^2 + 3ab - 2ba \][/tex]

2. Combine like terms:

Notice that [tex]\(6a^2b\)[/tex] and [tex]\(-2ba^2\)[/tex] are like terms since both contain [tex]\(a^2b\)[/tex]. Similarly, [tex]\(3ab\)[/tex] and [tex]\(-2ba\)[/tex] are like terms since both contain [tex]\(ab\)[/tex].

3. Combine [tex]\(a^2b\)[/tex] terms:

[tex]\[ 6a^2b - 2ba^2 = 6a^2b - 2a^2b = (6 - 2)a^2b = 4a^2b \][/tex]

4. Combine [tex]\(ab\)[/tex] terms:

[tex]\[ 3ab - 2ba = 3ab - 2ab = (3 - 2)ab = ab \][/tex]

So, the expression simplifies to:

[tex]\[ 4a^2b + ab \][/tex]

5. Factor out the common term [tex]\(ab\)[/tex]:

Both terms [tex]\(4a^2b\)[/tex] and [tex]\(ab\)[/tex] contain the common factor [tex]\(ab\)[/tex]. Factoring out [tex]\(ab\)[/tex] gives:

[tex]\[ 4a^2b + ab = ab(4a + 1) \][/tex]

Thus, the simplified form of the expression [tex]\( 6a^2b - 2ba^2 + 3ab - 2ba \)[/tex] is:

[tex]\[ ab(4a + 1) \][/tex]

This is the final, simplified expression.