Given the following table of values for [tex]$f(x)$[/tex], find [tex]$f(8)$[/tex].

[tex]\[
\begin{tabular}{ccccccc}
$x$ & -4 & -3 & -1 & 1 & 6 & 8 \\
\hline
$f(x)$ & 2 & 7 & 1 & 7 & 9 & -2 \\
\hline
\end{tabular}
\][/tex]

Provide your answer below:
[tex]\[
f(8) = \square
\][/tex]



Answer :

To find the value of [tex]\( f(8) \)[/tex] using the given table, follow these steps:

1. Identify the given values:
The table provides pairs of [tex]\( x \)[/tex] and [tex]\( f(x) \)[/tex]:
[tex]\[ \begin{tabular}{ccccccc} $x$ & -4 & -3 & -1 & 1 & 6 & 8 \\ \hline $f(x)$ & 2 & 7 & 1 & 7 & 9 & -2 \\ \hline \end{tabular} \][/tex]

2. Locate [tex]\( x = 8 \)[/tex] in the table:
We need to find the value of [tex]\( f(x) \)[/tex] when [tex]\( x = 8 \)[/tex].

3. Find the corresponding [tex]\( f(x) \)[/tex] value:
According to the table, when [tex]\( x = 8 \)[/tex], the corresponding [tex]\( f(x) = -2 \)[/tex].

Thus, the value of [tex]\( f(8) \)[/tex] is:
[tex]\[ f(8) = -2 \][/tex]