Drag the tiles to the correct locations on the equation. Not all pieces will be used.

Consider this absolute value function.
[tex]f(x)=|x+3|[/tex]

How can function [tex]f[/tex] be rewritten as a piecewise function?
[tex]
\begin{array}{c}
x\ \textless \ 3 \quad x \geq-3 \quad -x+3 \quad -x-3 \quad x \geq 3 \quad x-3 \quad x\ \textless \ -3 \\
f(x)=\left\{\begin{array}{ll}
x+3 & \text{if } x \geq -3 \\
-(x+3) & \text{if } x \ \textless \ -3 \\
\end{array}\right.
\end{array}
[/tex]



Answer :

To rewrite the absolute value function [tex]\( f(x) = |x + 3| \)[/tex] as a piecewise function, we need to determine how the function behaves for different intervals of [tex]\( x \)[/tex].

The absolute value function [tex]\( |x + 3| \)[/tex] can be split into two cases:

1. When the expression inside the absolute value, [tex]\( x + 3 \)[/tex], is non-negative (i.e., [tex]\( x + 3 \geq 0 \)[/tex]), then the absolute value does not change the expression.

- This happens when [tex]\( x \geq -3 \)[/tex].
- In this case, [tex]\( f(x) = x + 3 \)[/tex].

2. When the expression inside the absolute value, [tex]\( x + 3 \)[/tex], is negative (i.e., [tex]\( x + 3 < 0 \)[/tex]), then the absolute value changes the sign of the expression.

- This happens when [tex]\( x < -3 \)[/tex].
- In this case, [tex]\( f(x) = -(x + 3) = -x - 3 \)[/tex].

So, the piecewise function can be written as:
[tex]\[ f(x) = \left\{ \begin{array}{ll} x + 3 & \text{if } x \geq -3 \\ -x - 3 & \text{if } x < -3 \end{array} \right. \][/tex]

Placing the appropriate pieces into the given format, we get:
[tex]\[ \begin{array}{c} x < -3 \quad x \geq -3 \quad -x - 3 \quad x + 3 \quad x \geq 3 \quad x - 3 \quad x < 3 \\ f(x) = \left\{ \begin{array}{ll} x + 3 & \text{if } x \geq -3 \\ -x - 3 & \text{if } x < -3 \end{array} \right. \end{array} \][/tex]

So the correct tiles to use are:
- [tex]\( x \geq -3 \)[/tex]
- [tex]\( x < -3 \)[/tex]
- [tex]\( x + 3 \)[/tex]
- [tex]\( -x - 3 \)[/tex]