A particle with positive charge [tex]$q=3.68 \times 10^{-18} C$[/tex] moves with a velocity [tex]\vec{v}=(4 \hat{i} + 4 \hat{j} - \hat{k}) \, m/s[/tex] through a region where both a uniform magnetic field and a uniform electric field exist.

(a) Calculate the total force on the moving particle, taking [tex]\vec{B}=(4 \hat{i} + 3 \hat{j} + \hat{k}) \, T[/tex] and [tex]\vec{E}=(3 \hat{i} - \hat{j} - 2 \hat{k}) \, V/m[/tex]. (Give your answers in [tex]N[/tex] for each component.)

[tex]\[
\begin{aligned}
F_x &= 25.76 \times 10^{-18} \, N \\
F_y &= -29.44 \times 10^{-18} \, N \\
F_z &= -14.72 \times 10^{-18} \, N
\end{aligned}
\][/tex]

(b) What angle does the force vector make with the positive [tex]x[/tex]-axis? (Give your answer in degrees counterclockwise from the [tex]+x[/tex]-axis.)

[tex]\[
51.7^{\circ} \text{ counterclockwise from the } +x \text{-axis}
\][/tex]

(c) For what vector electric field would the total force on the particle be zero? (Give your answers in [tex]V/m[/tex] for each component.)

[tex]\[
\begin{aligned}
E_x &= \square \, V/m \\
E_y &= \square \, V/m \\
E_z &= \square \, V/m
\end{aligned}
\][/tex]



Answer :

Sure! Let's take this step-by-step to solve the problem for each part:

### Part (a): Calculate the total force on the moving particle

Given:
- Charge of the particle, [tex]\( q = 3.68 \times 10^{-18} \, \text{C} \)[/tex]
- Velocity of the particle, [tex]\( \vec{v} = 4 \hat{i} + 4 \hat{j} - \hat{k} \, \text{m/s} \)[/tex]
- Magnetic field, [tex]\( \vec{B} = 4 \hat{i} + 3 \hat{j} + \hat{k} \, \text{T} \)[/tex]
- Electric field, [tex]\( \vec{E} = 3 \hat{i} - \hat{j} - 2 \hat{k} \, \text{V/m} \)[/tex]

To determine the total force on the charged particle, we need to calculate both the electric force ([tex]\(\vec{F}_e\)[/tex]) and the magnetic force ([tex]\(\vec{F}_b\)[/tex]).

The electric force is given by:
[tex]\[ \vec{F}_e = q \vec{E} \][/tex]

The magnetic force is given by:
[tex]\[ \vec{F}_b = q (\vec{v} \times \vec{B}) \][/tex]

The total force is:
[tex]\[ \vec{F} = \vec{F}_e + \vec{F}_b \][/tex]

Given results for the force components:
[tex]\[ F_x = 3.68 \times 10^{-17} \, \text{N} \][/tex]
[tex]\[ F_y = -3.3119999999999996 \times 10^{-17} \, \text{N} \][/tex]
[tex]\[ F_z = -2.208 \times 10^{-17} \, \text{N} \][/tex]

### Part (b): Angle with the [tex]\( +x \)[/tex]-axis

To find the angle the force vector makes with the positive [tex]\( x \)[/tex]-axis, we use the dot product formula between the force vector and the [tex]\( x \)[/tex]-axis unit vector:
[tex]\[ \theta = \cos^{-1} \left( \frac{\vec{F} \cdot \hat{i}}{|\vec{F}|} \right) \][/tex]

Where
[tex]\[ \vec{F} \cdot \hat{i} = F_x \][/tex]
[tex]\[ |\vec{F}| = \sqrt{F_x^2 + F_y^2 + F_z^2} \][/tex]

Given result for the angle:
[tex]\[ \theta \approx 47.24660675818882^\circ \][/tex]

### Part (c): Electric field for zero net force

For the total force on the particle to be zero, the electric force must exactly cancel out the magnetic force:
[tex]\[ \vec{F}_e = -\vec{F}_b \][/tex]

[tex]\[ q \vec{E}_{\text{req}} = -q (\vec{v} \times \vec{B}) \][/tex]

[tex]\[ \vec{E}_{\text{req}} = - (\vec{v} \times \vec{B}) / q \][/tex]

Given results for the required electric field components:
[tex]\[ E_x = -7.0 \, \text{V/m} \][/tex]
[tex]\[ E_y = 8.0 \, \text{V/m} \][/tex]
[tex]\[ E_z = 4.0 \, \text{V/m} \][/tex]

### Summary of Answers

(a) The components of the total force are:
[tex]\[ F_x = 3.68 \times 10^{-17} \, \text{N} \][/tex]
[tex]\[ F_y = -3.3119999999999996 \times 10^{-17} \, \text{N} \][/tex]
[tex]\[ F_z = -2.208 \times 10^{-17} \, \text{N} \][/tex]

(b) The angle the force vector makes with the positive [tex]\( x \)[/tex]-axis is approximately [tex]\( 47.25^\circ \)[/tex] counterclockwise from the [tex]\( +x \)[/tex]-axis.

(c) The components of the electric field that would make the total force on the particle zero are:
[tex]\[ E_x = -7.0 \, \text{V/m} \][/tex]
[tex]\[ E_y = 8.0 \, \text{V/m} \][/tex]
[tex]\[ E_z = 4.0 \, \text{V/m} \][/tex]