Solve [tex]3x - 9 \geq 27 - 6x[/tex]

A. [tex]x \geq 4[/tex]

B. [tex]x \leq 4[/tex]

C. [tex]x \leq -12[/tex]

D. [tex]x \geq -12[/tex]



Answer :

To solve the inequality [tex]\(3x - 9 \geq 27 - 6x\)[/tex], follow these detailed steps:

1. Start with the given inequality:
[tex]\[ 3x - 9 \geq 27 - 6x \][/tex]

2. Move all terms involving [tex]\(x\)[/tex] to one side of the inequality:
To simplify, add [tex]\(6x\)[/tex] to both sides of the inequality:
[tex]\[ 3x - 9 + 6x \geq 27 \][/tex]

3. Combine like terms:
Combine the terms with [tex]\(x\)[/tex] on the left side:
[tex]\[ 9x - 9 \geq 27 \][/tex]

4. Isolate the term with [tex]\(x\)[/tex]:
To isolate [tex]\(x\)[/tex], add [tex]\(9\)[/tex] to both sides of the inequality:
[tex]\[ 9x - 9 + 9 \geq 27 + 9 \][/tex]
[tex]\[ 9x \geq 36 \][/tex]

5. Solve for [tex]\(x\)[/tex] by dividing both sides by 9:
[tex]\[ \frac{9x}{9} \geq \frac{36}{9} \][/tex]
[tex]\[ x \geq 4 \][/tex]

Therefore, the solution to the inequality [tex]\(3x - 9 \geq 27 - 6x\)[/tex] is [tex]\(x \geq 4\)[/tex].

So the correct answer choice is:
A. [tex]\( x \geq 4 \)[/tex]