Which number, when placed in the box, will make the equation true?

[tex]\square^2=\sqrt{64}[/tex]

A. [tex]\sqrt{8}[/tex]

B. [tex]\sqrt{32}[/tex]

C. 16

D. 32



Answer :

To determine which number, when placed in the box, will make the equation [tex]\(\square^2 = \sqrt{64}\)[/tex] true, we need to follow these steps:

1. Calculate [tex]\(\sqrt{64}\)[/tex]:

The square root of 64 is calculated as:
[tex]\[ \sqrt{64} = 8 \][/tex]

2. Assess the given options to see which, when squared, equals 8:

Let's evaluate each option:

Option A: [tex]\(\sqrt{8}\)[/tex]

First, calculate [tex]\(\sqrt{8}\)[/tex]:
[tex]\[ \sqrt{8} = 2.8284271247461903 \][/tex]
Now, square [tex]\(\sqrt{8}\)[/tex]:
[tex]\[ (\sqrt{8})^2 = (2.8284271247461903)^2 = 8 \][/tex]

Option B: [tex]\(\sqrt{32}\)[/tex]

First, calculate [tex]\(\sqrt{32}\)[/tex]:
[tex]\[ \sqrt{32} = 5.656854249492381 \][/tex]
Now, square [tex]\(\sqrt{32}\)[/tex]:
[tex]\[ (\sqrt{32})^2 = (5.656854249492381)^2 = 32 \][/tex]

Option C: 16

Square 16:
[tex]\[ 16^2 = 256 \][/tex]

Option D: 32

Square 32:
[tex]\[ 32^2 = 1024 \][/tex]

3. Compare the results to [tex]\(\sqrt{64} = 8\)[/tex]:

- [tex]\((\sqrt{8})^2 = 8\)[/tex]
- [tex]\((\sqrt{32})^2 = 32\)[/tex]
- [tex]\(16^2 = 256\)[/tex]
- [tex]\(32^2 = 1024\)[/tex]

We see only one number, [tex]\(\sqrt{8} = 2.8284271247461903\)[/tex], when squared, equals 8.

Therefore, the correct answer is:
[tex]\[ \boxed{\sqrt{8}} \][/tex]