Answered

Find the coordinates of the midpoint of [tex]\overline{KL}[/tex] with endpoints [tex]K (-20,3)[/tex] and [tex]L (12,-2)[/tex].

A. [tex]\left(-4, \frac{1}{2}\right)[/tex]
B. [tex](-8,1)[/tex]
C. [tex]\left(-\frac{17}{2}, 5\right)[/tex]
D. [tex]\left(-16, \frac{5}{2}\right)[/tex]



Answer :

To find the coordinates of the midpoint of the line segment [tex]\(\overline{KL}\)[/tex] with given endpoints [tex]\(K(-20, 3)\)[/tex] and [tex]\(L(12, -2)\)[/tex], we can use the midpoint formula. The midpoint formula states that if you have two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], the coordinates of the midpoint [tex]\(M\)[/tex] are given by:

[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Let's apply this formula step-by-step:

1. Identify the coordinates of the points [tex]\(K\)[/tex] and [tex]\(L\)[/tex]:
- [tex]\(K = (-20, 3)\)[/tex]
- [tex]\(L = (12, -2)\)[/tex]

2. Calculate the x-coordinate of the midpoint:
[tex]\[ x_{\text{mid}} = \frac{x_1 + x_2}{2} = \frac{-20 + 12}{2} = \frac{-8}{2} = -4 \][/tex]

3. Calculate the y-coordinate of the midpoint:
[tex]\[ y_{\text{mid}} = \frac{y_1 + y_2}{2} = \frac{3 + (-2)}{2} = \frac{1}{2} = 0.5 \][/tex]

Combining these results, the coordinates of the midpoint are:

[tex]\[ M = \left( -4, 0.5 \right) \][/tex]

Thus, the coordinates of the midpoint of [tex]\(\overline{KL}\)[/tex] is:

[tex]\[ \left( -4, 0.5 \right) \][/tex]

Among the given options, the coordinates [tex]\(\left(-4, \frac{1}{2} \right)\)[/tex] match our result.