Question 2

Simplify: [tex]\frac{5 r^3 t^7}{6 r^5 t^7}[/tex].

A. [tex]\frac{5 t}{6 r^2}[/tex]
B. [tex]\frac{5}{6 t r^2}[/tex]
C. [tex]\frac{5}{6 r^2}[/tex]
D. [tex]\frac{6}{5 r^2}[/tex]



Answer :

To simplify the expression [tex]\(\frac{5 r^3 t^7}{6 r^5 t^7}\)[/tex], follow these steps:

1. Separate the Coefficients and Variables:
[tex]\[ \frac{5 r^3 t^7}{6 r^5 t^7} = \frac{5}{6} \cdot \frac{r^3}{r^5} \cdot \frac{t^7}{t^7} \][/tex]

2. Simplify the Coefficient:
[tex]\[ \frac{5}{6} \][/tex]

3. Simplify the [tex]\(r\)[/tex] Terms:
[tex]\[ \frac{r^3}{r^5} = r^{3-5} = r^{-2} \][/tex]

4. Simplify the [tex]\(t\)[/tex] Terms:
Since [tex]\(t^7\)[/tex] in the numerator and denominator are the same, they cancel out:
[tex]\[ \frac{t^7}{t^7} = 1 \][/tex]

5. Combine the Simplified Parts:
[tex]\[ \frac{5}{6} \cdot r^{-2} \cdot 1 = \frac{5}{6} \cdot \frac{1}{r^2} = \frac{5}{6 r^2} \][/tex]

So, the simplified expression is:

[tex]\[ \frac{5}{6 r^2} \][/tex]

Thus, the correct answer is:
[tex]\(\boxed{\frac{5}{6 r^2}}\)[/tex].