Question 4

Simplify: [tex]\left(\frac{t^2 r s^2}{4 t^{-2} r^2 s}\right)^0[/tex].

A. 0

B. [tex]\frac{t^2 r}{4 s t^2}[/tex]

C. [tex]\frac{t^2 s}{4 s}[/tex]

D. 1



Answer :

Let's simplify the given expression step-by-step and evaluate it:

The given expression is:

[tex]$\left(\frac{t^2 r s^2}{4 t^{-2} r^2 s}\right)^0$[/tex]

First, let's simplify the expression inside the parentheses:

1. Combine the terms in the numerator and the denominator:

[tex]\[ \frac{t^2 r s^2}{4 t^{-2} r^2 s} \][/tex]

2. Simplify each component:

- For [tex]\(t\)[/tex]: [tex]\[ \frac{t^2}{t^{-2}} = t^2 \cdot t^2 = t^{2+2} = t^4 \][/tex]

- For [tex]\(r\)[/tex]: [tex]\[ \frac{r}{r^2} = r^{1-2} = r^{-1} = \frac{1}{r} \][/tex]

- For [tex]\(s\)[/tex]: [tex]\[ \frac{s^2}{s} = s^{2-1} = s \][/tex]

3. Simplify the fraction combining all the simplified terms:

[tex]\[ \frac{t^4 \cdot s}{4r} \][/tex]

Therefore, the simplified form inside the parentheses is:

[tex]\[ \frac{t^4 \cdot s}{4r} \][/tex]

4. Considering the exponent 0:

Any non-zero expression raised to the power of 0 is equal to 1. Hence,

[tex]\[ \left(\frac{t^4 s}{4 r}\right)^0 = 1 \][/tex]

Therefore, the simplified result of the expression [tex]\(\left(\frac{t^2 r s^2}{4 t^{-2} r^2 s}\right)^0\)[/tex] is:

[tex]\[ \boxed{1} \][/tex]