Answer :
To determine the product [tex]\((\sqrt{14} - \sqrt{3})(\sqrt{12} + \sqrt{7})\)[/tex], we use the distributive property (also known as the FOIL method for binomials). The distributive property states that:
[tex]\[ (a + b)(c + d) = ac + ad + bc + bd \][/tex]
Applying this to our expression:
[tex]\[ (\sqrt{14} - \sqrt{3})(\sqrt{12} + \sqrt{7}) = \sqrt{14}\sqrt{12} + \sqrt{14}\sqrt{7} - \sqrt{3}\sqrt{12} - \sqrt{3}\sqrt{7} \][/tex]
Let's break down each term one by one:
1. [tex]\(\sqrt{14} \cdot \sqrt{12}\)[/tex]
2. [tex]\(\sqrt{14} \cdot \sqrt{7}\)[/tex]
3. [tex]\(-\sqrt{3} \cdot \sqrt{12}\)[/tex]
4. [tex]\(-\sqrt{3} \cdot \sqrt{7}\)[/tex]
First term:
[tex]\[ \sqrt{14} \cdot \sqrt{12} = \sqrt{14 \cdot 12} = \sqrt{168} \approx 12.96148139681572 \][/tex]
Second term:
[tex]\[ \sqrt{14} \cdot \sqrt{7} = \sqrt{14 \cdot 7} = \sqrt{98} \approx 9.899494936611665 \][/tex]
Third term:
[tex]\[ -\sqrt{3} \cdot \sqrt{12} = -\sqrt{3 \cdot 12} = -\sqrt{36} = -6 \][/tex]
Fourth term:
[tex]\[ -\sqrt{3} \cdot \sqrt{7} = -\sqrt{3 \cdot 7} = -\sqrt{21} \approx -4.58257569495584 \][/tex]
Now, we can combine these terms to get the final expression:
[tex]\[ (\sqrt{14} - \sqrt{3})(\sqrt{12} + \sqrt{7}) = \sqrt{168} + \sqrt{98} - 6 - \sqrt{21} \][/tex]
[tex]\[ \approx 12.96148139681572 + 9.899494936611665 - 6 - 4.58257569495584 \][/tex]
Therefore, we simplify and recognize the similar terms:
[tex]\[ 12.96148139681572 - 4.58257569495584 = 2\sqrt{42} - \sqrt{21} \][/tex]
Hence, the simplified form of the expression [tex]\((\sqrt{14} - \sqrt{3})(\sqrt{12} + \sqrt{7})\)[/tex] is:
[tex]\[ 2\sqrt{42} - \sqrt{21} \][/tex]
[tex]\[ (a + b)(c + d) = ac + ad + bc + bd \][/tex]
Applying this to our expression:
[tex]\[ (\sqrt{14} - \sqrt{3})(\sqrt{12} + \sqrt{7}) = \sqrt{14}\sqrt{12} + \sqrt{14}\sqrt{7} - \sqrt{3}\sqrt{12} - \sqrt{3}\sqrt{7} \][/tex]
Let's break down each term one by one:
1. [tex]\(\sqrt{14} \cdot \sqrt{12}\)[/tex]
2. [tex]\(\sqrt{14} \cdot \sqrt{7}\)[/tex]
3. [tex]\(-\sqrt{3} \cdot \sqrt{12}\)[/tex]
4. [tex]\(-\sqrt{3} \cdot \sqrt{7}\)[/tex]
First term:
[tex]\[ \sqrt{14} \cdot \sqrt{12} = \sqrt{14 \cdot 12} = \sqrt{168} \approx 12.96148139681572 \][/tex]
Second term:
[tex]\[ \sqrt{14} \cdot \sqrt{7} = \sqrt{14 \cdot 7} = \sqrt{98} \approx 9.899494936611665 \][/tex]
Third term:
[tex]\[ -\sqrt{3} \cdot \sqrt{12} = -\sqrt{3 \cdot 12} = -\sqrt{36} = -6 \][/tex]
Fourth term:
[tex]\[ -\sqrt{3} \cdot \sqrt{7} = -\sqrt{3 \cdot 7} = -\sqrt{21} \approx -4.58257569495584 \][/tex]
Now, we can combine these terms to get the final expression:
[tex]\[ (\sqrt{14} - \sqrt{3})(\sqrt{12} + \sqrt{7}) = \sqrt{168} + \sqrt{98} - 6 - \sqrt{21} \][/tex]
[tex]\[ \approx 12.96148139681572 + 9.899494936611665 - 6 - 4.58257569495584 \][/tex]
Therefore, we simplify and recognize the similar terms:
[tex]\[ 12.96148139681572 - 4.58257569495584 = 2\sqrt{42} - \sqrt{21} \][/tex]
Hence, the simplified form of the expression [tex]\((\sqrt{14} - \sqrt{3})(\sqrt{12} + \sqrt{7})\)[/tex] is:
[tex]\[ 2\sqrt{42} - \sqrt{21} \][/tex]