What is the following product?

[tex]\[
(\sqrt{14} - \sqrt{3})(\sqrt{12} + \sqrt{7})
\][/tex]

A. [tex]\(2 \sqrt{42} + 7 \sqrt{2} - 6 - \sqrt{21}\)[/tex]

B. [tex]\(\sqrt{14} - 6 + \sqrt{7}\)[/tex]

C. [tex]\(\sqrt{26} + \sqrt{21} - \sqrt{15} - \sqrt{10}\)[/tex]

D. [tex]\(2 \sqrt{42} - \sqrt{21}\)[/tex]



Answer :

To determine the product [tex]\((\sqrt{14} - \sqrt{3})(\sqrt{12} + \sqrt{7})\)[/tex], we use the distributive property (also known as the FOIL method for binomials). The distributive property states that:

[tex]\[ (a + b)(c + d) = ac + ad + bc + bd \][/tex]

Applying this to our expression:

[tex]\[ (\sqrt{14} - \sqrt{3})(\sqrt{12} + \sqrt{7}) = \sqrt{14}\sqrt{12} + \sqrt{14}\sqrt{7} - \sqrt{3}\sqrt{12} - \sqrt{3}\sqrt{7} \][/tex]

Let's break down each term one by one:

1. [tex]\(\sqrt{14} \cdot \sqrt{12}\)[/tex]
2. [tex]\(\sqrt{14} \cdot \sqrt{7}\)[/tex]
3. [tex]\(-\sqrt{3} \cdot \sqrt{12}\)[/tex]
4. [tex]\(-\sqrt{3} \cdot \sqrt{7}\)[/tex]

First term:
[tex]\[ \sqrt{14} \cdot \sqrt{12} = \sqrt{14 \cdot 12} = \sqrt{168} \approx 12.96148139681572 \][/tex]

Second term:
[tex]\[ \sqrt{14} \cdot \sqrt{7} = \sqrt{14 \cdot 7} = \sqrt{98} \approx 9.899494936611665 \][/tex]

Third term:
[tex]\[ -\sqrt{3} \cdot \sqrt{12} = -\sqrt{3 \cdot 12} = -\sqrt{36} = -6 \][/tex]

Fourth term:
[tex]\[ -\sqrt{3} \cdot \sqrt{7} = -\sqrt{3 \cdot 7} = -\sqrt{21} \approx -4.58257569495584 \][/tex]

Now, we can combine these terms to get the final expression:

[tex]\[ (\sqrt{14} - \sqrt{3})(\sqrt{12} + \sqrt{7}) = \sqrt{168} + \sqrt{98} - 6 - \sqrt{21} \][/tex]

[tex]\[ \approx 12.96148139681572 + 9.899494936611665 - 6 - 4.58257569495584 \][/tex]

Therefore, we simplify and recognize the similar terms:

[tex]\[ 12.96148139681572 - 4.58257569495584 = 2\sqrt{42} - \sqrt{21} \][/tex]

Hence, the simplified form of the expression [tex]\((\sqrt{14} - \sqrt{3})(\sqrt{12} + \sqrt{7})\)[/tex] is:

[tex]\[ 2\sqrt{42} - \sqrt{21} \][/tex]