A simple random sample of 90 is drawn from a normally distributed population, and the mean is found to be 138, with a standard deviation of 34. What is the [tex]$90\%$[/tex] confidence interval for the population mean? Use the table below to help you answer the question.

[tex]\[
\begin{tabular}{|c|c|c|c|}
\hline Confidence Level & $90\%$ & $95\%$ & $99\%$ \\
\hline $z^*$-score & 1.645 & 1.96 & 2.58 \\
\hline
\end{tabular}
\][/tex]

Remember, the margin of error, [tex]$ME$[/tex], can be determined using the formula [tex]$ME = \frac{z \cdot s}{\sqrt{n}}$[/tex].

A. 128.75 to 147.25
B. 130.98 to 145.02
C. 132.10 to 143.90
D. 137.38 to 138.62



Answer :

To find the [tex]\(90 \% \)[/tex] confidence interval for the population mean given the provided data, follow these steps:

1. Identify the given values:
- Sample size ([tex]\( n \)[/tex]) = 90
- Sample mean ([tex]\( \bar{x} \)[/tex]) = 138
- Sample standard deviation ([tex]\( s \)[/tex]) = 34

2. Determine the [tex]\( z \)[/tex]-score for a 90% confidence level:
- From the provided table, [tex]\( z^* \)[/tex]-score for a 90% confidence level is 1.645.

3. Calculate the margin of error (ME):
[tex]\[ ME = \frac{z^* \cdot s}{\sqrt{n}} \][/tex]
Substituting the given values:
[tex]\[ ME = \frac{1.645 \cdot 34}{\sqrt{90}} \][/tex]

4. Compute the margin of error:
[tex]\[ ME \approx \frac{1.645 \cdot 34}{9.486832980505138} \approx 5.895539651107248 \][/tex]

5. Determine the confidence interval:
- The formula for the confidence interval is:
[tex]\[ \left( \bar{x} - ME, \bar{x} + ME \right) \][/tex]
- Substituting the values:
[tex]\[ \left( 138 - 5.895539651107248, 138 + 5.895539651107248 \right) \][/tex]
[tex]\[ \left( 132.10446034889276, 143.89553965110724 \right) \][/tex]

Therefore, the 90% confidence interval for the population mean is [tex]\( \left( 132.10, 143.90 \right) \)[/tex].

This interval suggests that we are 90% confident that the true population mean lies within the range from approximately 132.10 to 143.90.