Answer :
Let's solve each of the four given equations step-by-step to find the value of [tex]\( x \)[/tex].
### Solve the first equation:
[tex]\[ 8.3 = -0.6x + 11.3 \][/tex]
1. Subtract 11.3 from both sides:
[tex]\[ 8.3 - 11.3 = -0.6x \][/tex]
[tex]\[ -3 = -0.6x \][/tex]
2. Divide by -0.6:
[tex]\[ x = \frac{-3}{-0.6} \][/tex]
[tex]\[ x = 5 \][/tex]
### Solve the second equation:
[tex]\[ 11.3 = 8.3 + 0.6x \][/tex]
1. Subtract 8.3 from both sides:
[tex]\[ 11.3 - 8.3 = 0.6x \][/tex]
[tex]\[ 3 = 0.6x \][/tex]
2. Divide by 0.6:
[tex]\[ x = \frac{3}{0.6} \][/tex]
[tex]\[ x = 5 \][/tex]
### Solve the third equation:
[tex]\[ 11.3 - 0.6x = 8.3 \][/tex]
1. Subtract 8.3 from both sides:
[tex]\[ 11.3 - 8.3 - 0.6x = 0 \][/tex]
[tex]\[ 3 = 0.6x \][/tex]
2. Divide by 0.6:
[tex]\[ x = \frac{3}{0.6} \][/tex]
[tex]\[ x = 5 \][/tex]
### Solve the fourth equation:
[tex]\[ 8.3 - 0.6x = 11.3 \][/tex]
1. Subtract 8.3 from both sides:
[tex]\[ 8.3 - 8.3 - 0.6x = 11.3 - 8.3 \][/tex]
[tex]\[ -0.6x = 3 \][/tex]
2. Divide by -0.6:
[tex]\[ x = \frac{3}{-0.6} \][/tex]
[tex]\[ x = -5 \][/tex]
### Conclusion
The first three equations:
[tex]\[ 8.3 = -0.6x + 11.3 \][/tex]
[tex]\[ 11.3 = 8.3 + 0.6x \][/tex]
[tex]\[ 11.3 - 0.6x = 8.3 \][/tex]
all yield the solution:
[tex]\[ x = 5 \][/tex]
The fourth equation:
[tex]\[ 8.3 - 0.6x = 11.3 \][/tex]
yields a different solution:
[tex]\[ x = -5 \][/tex]
Therefore, the equation that results in a different value of [tex]\( x \)[/tex] than the other three is:
[tex]\[ 8.3 - 0.6x = 11.3 \][/tex]
### Solve the first equation:
[tex]\[ 8.3 = -0.6x + 11.3 \][/tex]
1. Subtract 11.3 from both sides:
[tex]\[ 8.3 - 11.3 = -0.6x \][/tex]
[tex]\[ -3 = -0.6x \][/tex]
2. Divide by -0.6:
[tex]\[ x = \frac{-3}{-0.6} \][/tex]
[tex]\[ x = 5 \][/tex]
### Solve the second equation:
[tex]\[ 11.3 = 8.3 + 0.6x \][/tex]
1. Subtract 8.3 from both sides:
[tex]\[ 11.3 - 8.3 = 0.6x \][/tex]
[tex]\[ 3 = 0.6x \][/tex]
2. Divide by 0.6:
[tex]\[ x = \frac{3}{0.6} \][/tex]
[tex]\[ x = 5 \][/tex]
### Solve the third equation:
[tex]\[ 11.3 - 0.6x = 8.3 \][/tex]
1. Subtract 8.3 from both sides:
[tex]\[ 11.3 - 8.3 - 0.6x = 0 \][/tex]
[tex]\[ 3 = 0.6x \][/tex]
2. Divide by 0.6:
[tex]\[ x = \frac{3}{0.6} \][/tex]
[tex]\[ x = 5 \][/tex]
### Solve the fourth equation:
[tex]\[ 8.3 - 0.6x = 11.3 \][/tex]
1. Subtract 8.3 from both sides:
[tex]\[ 8.3 - 8.3 - 0.6x = 11.3 - 8.3 \][/tex]
[tex]\[ -0.6x = 3 \][/tex]
2. Divide by -0.6:
[tex]\[ x = \frac{3}{-0.6} \][/tex]
[tex]\[ x = -5 \][/tex]
### Conclusion
The first three equations:
[tex]\[ 8.3 = -0.6x + 11.3 \][/tex]
[tex]\[ 11.3 = 8.3 + 0.6x \][/tex]
[tex]\[ 11.3 - 0.6x = 8.3 \][/tex]
all yield the solution:
[tex]\[ x = 5 \][/tex]
The fourth equation:
[tex]\[ 8.3 - 0.6x = 11.3 \][/tex]
yields a different solution:
[tex]\[ x = -5 \][/tex]
Therefore, the equation that results in a different value of [tex]\( x \)[/tex] than the other three is:
[tex]\[ 8.3 - 0.6x = 11.3 \][/tex]