What is the solution to [tex]2x - 8 \ \textless \ 12[/tex]?

A. [tex]x \ \textless \ 2[/tex]
B. [tex]x \ \textless \ 8[/tex]
C. [tex]x \ \textless \ 10[/tex]
D. [tex]x \ \textless \ 40[/tex]



Answer :

To solve the inequality [tex]\(2x - 8 < 12\)[/tex], follow these steps:

1. Isolate the term involving [tex]\(x\)[/tex]:
- Start by adding 8 to both sides of the inequality to get rid of the constant term on the left side:
[tex]\[ 2x - 8 + 8 < 12 + 8 \][/tex]
- This simplifies to:
[tex]\[ 2x < 20 \][/tex]

2. Solve for [tex]\(x\)[/tex]:
- Next, divide both sides of the inequality by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{2x}{2} < \frac{20}{2} \][/tex]
- This simplifies to:
[tex]\[ x < 10 \][/tex]

Therefore, the solution to the inequality [tex]\(2x - 8 < 12\)[/tex] is [tex]\(x < 10\)[/tex].

From the given options, the correct choice is:
[tex]\[ x < 10 \][/tex]