\begin{tabular}{l|l|l}
\hline & Brian & Joe \\
\hline [tex]$92 \times 10^{-10}$[/tex] & [tex]$\frac{6.89 \times 10^{-4}}{7.5 \times 10^{-6}}=.92 \times 10^{-10}$[/tex] & [tex]$\frac{6.89 \times 10^{-4}}{7.5 \times 10^{-6}}=.92 \times 10^2$[/tex] \\
\hline & [tex]$=9.2 \times 10^{-9}$[/tex] & [tex]$=9.2 \times 10^3$[/tex] \\
\hline
\end{tabular}

Explain the step-by-step process that Brian took to solve the problem. Is Brian correct? If not, where did he go wrong?

Explain the step-by-step process that Joe took to solve the problem. Is Joe correct? If not, where did he go wrong?



Answer :

To determine whether Brian and Joe's answers are correct, let's go through a detailed, step-by-step solution to the problem.

We start with the given fraction:
[tex]\[ \frac{6.89 \times 10^{-4}}{7.5 \times 10^{-6}} \][/tex]

1. Simplify the Powers of 10:
[tex]\[ \frac{6.89 \times 10^{-4}}{7.5 \times 10^{-6}} = \frac{6.89}{7.5} \times 10^{-4 - (-6)} = \frac{6.89}{7.5} \times 10^{2} \][/tex]

2. Calculate the Division of the Coefficients:
[tex]\[ \frac{6.89}{7.5} \approx 0.9186666666666667 \][/tex]

3. Combine the Result of the Division with the Power of 10:
[tex]\[ 0.9186666666666667 \times 10^{2} = 91.86666666666667 \][/tex]

4. Convert to Scientific Notation if Necessary:
[tex]\[ 91.86666666666667 = 9.186666666666667 \times 10^{1} \approx 9.2 \times 10^{1} \][/tex]

However, let's verify the specific steps and logic Brian and Joe used for their calculations.

### Brian's Answer:
Brian claims:
[tex]\[ 92 \times 10^{-10} = \frac{6.89 \times 10^{-4}}{7.5 \times 10^{-6}} = 9.2 \times 10^{-9} \][/tex]

Let's check what Brian actually did:
1. Brian seems to have taken the result [tex]\( 91.86666666666667 \times 10^{0} \)[/tex] and converted it incorrectly to [tex]\( 9.2 \times 10^{1-10} = 9.2 \times 10^{-9} \)[/tex].

Brian was incorrect because the true result is [tex]\( 91.86666666666667 \)[/tex], not [tex]\( 9.2 \times 10^{-9} \)[/tex].

### Joe's Answer:
Joe claims:
[tex]\[ \frac{6.89 \times 10^{-4}}{7.5 \times 10^{-6}} = 0.92 \times 10^2 = 9.2 \times 10^3 \][/tex]

Let's check what Joe actually did:
1. Joe multiplied the result [tex]\( 91.86666666666667 \)[/tex] by [tex]\( 10^{2} \)[/tex], arriving at [tex]\( 91.86666666666667 \times 10^{2} \)[/tex].

Joe converted [tex]\( 0.9186666666666667 \times 10^{2} \)[/tex] incorrectly, arriving at [tex]\( 9.18666666666666667 \times 10^{3} \)[/tex].

### Conclusion:
Both Brian and Joe are incorrect in their final steps:
- Brian’s final answer did not accurately represent the magnitude of the initial fraction and ended up at [tex]\( 9.2 \times 10^{-9} \)[/tex], which is incorrect.
- Joe’s final answer [tex]\( 9.2 \times 10^{3} \)[/tex] stems from incorrect simplification and erroneous steps from his side.

Thus neither Brian nor Joe has given the correct answer.