What is the sum of the polynomials?

[tex]\[ (6x + 7 + x^2) + (2x^2 - 3) \][/tex]

A. [tex]\(-x^2 + 6x + 4\)[/tex]
B. [tex]\(3x^2 + 6x + 4\)[/tex]
C. [tex]\(9x + 4\)[/tex]
D. [tex]\(9x^2 + 4\)[/tex]



Answer :

Let's start by adding the polynomials step by step.

First, consider the two polynomials:
[tex]\[ (6x + 7 + x^2) \][/tex]
and
[tex]\[ (2x^2 - 3) \][/tex]

When we add these two polynomials, we combine the like terms (terms with [tex]\(x^2\)[/tex], terms with [tex]\(x\)[/tex], and constant terms).

Combining the like terms, we get:
[tex]\[ x^2 + 2x^2 = 3x^2 \][/tex]
[tex]\[ 6x = 6x \quad \text{(since second polynomial has no x term)} \][/tex]
[tex]\[ 7 + (-3) = 4 \][/tex]

So, the sum of the first two polynomials is:
[tex]\[ 3x^2 + 6x + 4 \][/tex]

Next, we need to add the polynomial:
[tex]\[ -x^2 + 6x + 4 \][/tex]

to the result of the previous addition:

[tex]\[ 3x^2 + 6x + 4 \][/tex]

Combining these terms, we get:
[tex]\[ 3x^2 + (-x^2) = 2x^2 \][/tex]
[tex]\[ 6x + 6x = 12x \][/tex]
[tex]\[ 4 + 4 = 8 \][/tex]

Thus, the resulting polynomial is:
[tex]\[ 2x^2 + 12x + 8 \][/tex]

As such, the sum of the polynomials is:
[tex]\[ \boxed{2x^2 + 12x + 8} \][/tex]