What are the features of the function [tex]g(x) = f(x+4) + 8[/tex]?

- [tex]\(x\)[/tex]-intercept at [tex]\((1, 0)\)[/tex]
- Range of [tex]\([8, \infty)\)[/tex]
- [tex]\(y\)[/tex]-intercept at [tex]\((0, 10)\)[/tex]
- Domain of [tex]\((4, \infty)\)[/tex]
- Vertical asymptote at [tex]\(x = -4\)[/tex]



Answer :

To determine the features of the function [tex]\( f(x) \)[/tex] given the function [tex]\( g(x) = f(x+4) + 8 \)[/tex] with the following characteristics:

- [tex]\( g(x) \)[/tex] has an [tex]\( x \)[/tex]-intercept at [tex]\((1,0)\)[/tex].
- The range of [tex]\( g(x) \)[/tex] is [tex]\((8, \infty)\)[/tex].
- [tex]\( g(x) \)[/tex] has a [tex]\( y \)[/tex]-intercept at [tex]\((0,10)\)[/tex].
- The domain of [tex]\( g(x) \)[/tex] is [tex]\((4, \infty)\)[/tex].
- [tex]\( g(x) \)[/tex] has a vertical asymptote at [tex]\( x = -4 \)[/tex].

We need to find:

1. The domain of [tex]\( f(x) \)[/tex].
2. The range of [tex]\( f(x) \)[/tex].
3. The [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex].
4. The [tex]\( x \)[/tex]-intercept of [tex]\( f(x) \)[/tex].
5. Any vertical asymptote of [tex]\( f(x) \)[/tex].

### Step-by-Step Solution

1. Domain of [tex]\( f(x) \)[/tex]:

The domain of [tex]\( g(x) \)[/tex] is [tex]\((4, \infty)\)[/tex]. Since [tex]\( g(x) = f(x+4) + 8 \)[/tex], for [tex]\( g(x) \)[/tex] to be defined, [tex]\( x+4 \)[/tex] must be within the domain of [tex]\( f(x) \)[/tex].
[tex]\[ x + 4 > 4 \implies x > 0 \][/tex]
Therefore, the domain of [tex]\( f(x) \)[/tex] is [tex]\((0, \infty)\)[/tex].

2. Range of [tex]\( f(x) \)[/tex]:

The range of [tex]\( g(x) \)[/tex] is [tex]\((8, \infty)\)[/tex]. Since [tex]\( g(x) = f(x+4) + 8 \)[/tex], [tex]\( f(x+4) \)[/tex] must be equal to [tex]\( g(x) - 8 \)[/tex]. Therefore, for [tex]\( g(x) \geq 8 \)[/tex],
[tex]\[ f(x+4) \geq 8 - 8 \implies f(x+4) \geq 0 \][/tex]
Thus, the range of [tex]\( f(x) \)[/tex] is [tex]\([0, \infty)\)[/tex].

3. [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex]:

The [tex]\( y \)[/tex]-intercept of [tex]\( g(x) \)[/tex] occurs when [tex]\( x = 0 \)[/tex], giving [tex]\((0, 10)\)[/tex]. At [tex]\( x = 0 \)[/tex],
[tex]\[ g(0) = f(0+4) + 8 = 10 \][/tex]
Therefore,
[tex]\[ f(4) + 8 = 10 \implies f(4) = 2 \][/tex]
Since [tex]\( f(0) \)[/tex] defines the [tex]\( y \)[/tex]-intercept, and we've substituted [tex]\( x+4 = 0 \implies x = -4 \)[/tex], the [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is [tex]\((0, 2)\)[/tex].

4. [tex]\( x \)[/tex]-intercept of [tex]\( f(x) \)[/tex]:

The [tex]\( x \)[/tex]-intercept of [tex]\( g(x) \)[/tex] is given as [tex]\((1, 0)\)[/tex], meaning [tex]\( g(1) = 0 \)[/tex]. Therefore,
[tex]\[ g(1) = f(1 + 4) + 8 = 0 \][/tex]
Hence,
[tex]\[ f(5) + 8 = 0 \implies f(5) = -8 \quad (\text{which is inconsistent as } f(x) \geq 0) \][/tex]
Actual correction reveals [tex]\( x \)[/tex]-intercept when substitutive for understanding [tex]\( f \)[/tex]'s base intercepting zero according to revised domain transformations.

5. Vertical asymptote of [tex]\( f(x) \)[/tex]:

[tex]\( g(x) \)[/tex] has a vertical asymptote at [tex]\( x = -4 \)[/tex]:
\[
g(-4) = f((-4) + 4) + 8 \rightarrow f(0)\nenver resultant in proposing specific transformations\)
This infers: there is no vertical asymptote observed through [tex]\( f(x) \)[/tex] evaluation.

Thus, the function [tex]\( f(x) \)[/tex] has the following features:

- Domain: [tex]\((0, \infty)\)[/tex]
- Range: [tex]\([0, \infty)\)[/tex]
- [tex]\( y \)[/tex]-intercept: [tex]\((0, 2)\)[/tex]
- [tex]\( x \)[/tex]-intercept: [tex]\((0, 2)\)[/tex]