Use the drop-down menus to choose the steps in order to correctly solve [tex]$3 + 4d - 14 = 15 - 5d - 4d$[/tex] for [tex]$d$[/tex].

[tex]\[
\begin{aligned}
3 + 4d - 14 &= 15 - 5d - 4d \\
4d - 11 &= 15 - 9d
\end{aligned}
\][/tex]

[tex]\[
\square
\][/tex]

[tex]\[
\square
\][/tex]



Answer :

Of course! Let's solve the equation step by step.

Starting with the given equation:
[tex]\[ 3 + 4d - 14 = 15 - 5d - 4d \][/tex]

Step 1: Combine like terms on the right side:
[tex]\[ 3 + 4d - 14 = 15 - 9d \][/tex]

Step 2: Simplify the constants on the left side:
[tex]\[ 4d - 11 = 15 - 9d \][/tex]

Step 3: Add [tex]\(9d\)[/tex] to both sides to move [tex]\(-9d\)[/tex] to the left side:
[tex]\[ 4d + 9d - 11 = 15 \][/tex]
[tex]\[ 13d - 11 = 15 \][/tex]

Step 4: Add [tex]\(11\)[/tex] to both sides to isolate the term with [tex]\(d\)[/tex]:
[tex]\[ 13d - 11 + 11 = 15 + 11 \][/tex]
[tex]\[ 13d = 26 \][/tex]

Step 5: Finally, divide both sides by [tex]\(13\)[/tex] to solve for [tex]\(d\)[/tex]:
[tex]\[ d = \frac{26}{13} \][/tex]
[tex]\[ d = 2 \][/tex]

So, the value of [tex]\(d\)[/tex] is [tex]\(2\)[/tex].