Genevieve wants to verify that [tex]\(-x\)[/tex] is the simplified expression of [tex]\(\frac{1}{5}(5x - 20) - \frac{1}{2}(4x - 8)\)[/tex].

Which procedure can Genevieve follow to verify this?

A. Add [tex]\(\frac{1}{5}(5x - 20) - \frac{1}{2}(4x - 8)\)[/tex] and [tex]\(-x\)[/tex].

B. Put an equal sign between [tex]\(\frac{1}{5}(5x - 20)\)[/tex] and [tex]\(\frac{1}{2}(4x - 8)\)[/tex] and then solve for [tex]\(x\)[/tex].

C. Substitute 5 for the first [tex]\(x\)[/tex], substitute 4 for the second [tex]\(x\)[/tex], then evaluate.

D. Substitute 5 into the expression and evaluate.



Answer :

To verify that [tex]\(-x\)[/tex] is the simplified expression of [tex]\(\frac{1}{5}(5x-20)-\frac{1}{2}(4x-8)\)[/tex], Genevieve can follow a detailed, step-by-step approach as outlined below:

### Step-by-Step Simplification Process

1. Expand the Terms Inside the Parentheses:

Let's first distribute the multiplication inside each term of the expression [tex]\(\frac{1}{5}(5x-20) - \frac{1}{2}(4x-8)\)[/tex].

Simplify [tex]\(\frac{1}{5}(5x - 20)\)[/tex]:
[tex]\[ \frac{1}{5} \cdot 5x - \frac{1}{5} \cdot 20 = x - 4 \][/tex]
So, [tex]\(\frac{1}{5}(5x - 20) = x - 4\)[/tex].

Simplify [tex]\(\frac{1}{2}(4x - 8)\)[/tex]:
[tex]\[ \frac{1}{2} \cdot 4x - \frac{1}{2} \cdot 8 = 2x - 4 \][/tex]
So, [tex]\(\frac{1}{2}(4x - 8) = 2x - 4\)[/tex].

2. Combine the Simplified Parts:

Now, substitute the simplified terms back into the original expression:
[tex]\[ x - 4 - (2x - 4) \][/tex]

3. Distribute and Simplify:

Next, distribute the subtraction over the second term inside the parentheses:
[tex]\[ x - 4 - 2x + 4 \][/tex]

4. Combine Like Terms:

Finally, combine the like terms to simplify the expression further:
[tex]\[ x - 2x - 4 + 4 = -x \][/tex]

By following these steps, Genevieve can verify that the simplified expression of [tex]\(\frac{1}{5}(5x-20)-\frac{1}{2}(4x-8)\)[/tex] is indeed [tex]\(-x\)[/tex].