For each sequence, find the first 4 terms and the 10th term.

a) [tex]n^2+3[/tex]

[tex]\square[/tex]
[tex]\square[/tex]
[tex]\square[/tex]
[tex]\square[/tex], ..., [tex]\square[/tex]

b) [tex]2n^2[/tex]

[tex]\square[/tex]
[tex]\square[/tex]
[tex]\square[/tex]
[tex]\square[/tex], ..., [tex]\square[/tex]



Answer :

Let's find the terms for each sequence step-by-step.

### Sequence a: [tex]\( n^2 + 3 \)[/tex]

#### First 4 Terms
1. For [tex]\( n = 1 \)[/tex]:
[tex]\[ 1^2 + 3 = 1 + 3 = 4 \][/tex]

2. For [tex]\( n = 2 \)[/tex]:
[tex]\[ 2^2 + 3 = 4 + 3 = 7 \][/tex]

3. For [tex]\( n = 3 \)[/tex]:
[tex]\[ 3^2 + 3 = 9 + 3 = 12 \][/tex]

4. For [tex]\( n = 4 \)[/tex]:
[tex]\[ 4^2 + 3 = 16 + 3 = 19 \][/tex]

So, the first four terms are: [tex]\( 4, 7, 12, 19 \)[/tex].

#### 10th Term
For [tex]\( n = 10 \)[/tex]:
[tex]\[ 10^2 + 3 = 100 + 3 = 103 \][/tex]

The 10th term is [tex]\( 103 \)[/tex].

### Sequence b: [tex]\( 2n^2 \)[/tex]

#### First 4 Terms
1. For [tex]\( n = 1 \)[/tex]:
[tex]\[ 2 \times 1^2 = 2 \times 1 = 2 \][/tex]

2. For [tex]\( n = 2 \)[/tex]:
[tex]\[ 2 \times 2^2 = 2 \times 4 = 8 \][/tex]

3. For [tex]\( n = 3 \)[/tex]:
[tex]\[ 2 \times 3^2 = 2 \times 9 = 18 \][/tex]

4. For [tex]\( n = 4 \)[/tex]:
[tex]\[ 2 \times 4^2 = 2 \times 16 = 32 \][/tex]

So, the first four terms are: [tex]\( 2, 8, 18, 32 \)[/tex].

#### 10th Term
For [tex]\( n = 10 \)[/tex]:
[tex]\[ 2 \times 10^2 = 2 \times 100 = 200 \][/tex]

The 10th term is [tex]\( 200 \)[/tex].

### Final Results:

For sequence a, [tex]\( n^2 + 3 \)[/tex]
- First 4 terms: [tex]\( 4, 7, 12, 19 \)[/tex]
- 10th term: [tex]\( 103 \)[/tex]

For sequence b, [tex]\( 2n^2 \)[/tex]
- First 4 terms: [tex]\( 2, 8, 18, 32 \)[/tex]
- 10th term: [tex]\( 200 \)[/tex]