Instructions: Read the question, work out your answer, and select the best option.

What is the slope of the line [tex]5x - 4y = 24[/tex] in the [tex]xy[/tex]-coordinate plane?

A. [tex]-6[/tex]

B. [tex]-\frac{5}{4}[/tex]

C. [tex]-\frac{4}{5}[/tex]

D. [tex]\frac{4}{5}[/tex]

E. [tex]\frac{5}{4}[/tex]



Answer :

Certainly! Let's find the slope of the given line [tex]\(5x - 4y = 24\)[/tex].

1. Rearrange the equation of the line:
We start with the standard form of the line equation:
[tex]\[ 5x - 4y = 24 \][/tex]

2. Solve for [tex]\(y\)[/tex] to get the equation in slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope:
[tex]\[ 5x - 4y = 24 \][/tex]
Subtract [tex]\(5x\)[/tex] from both sides:
[tex]\[ -4y = -5x + 24 \][/tex]
Divide every term by [tex]\(-4\)[/tex]:
[tex]\[ y = \frac{5}{4}x - 6 \][/tex]

3. Identify the slope from the slope-intercept form [tex]\(y = mx + b\)[/tex]:
The coefficient of [tex]\(x\)[/tex] is the slope [tex]\(m\)[/tex].
[tex]\[ y = \left( \frac{5}{4} \right) x - 6 \][/tex]
Therefore, the slope [tex]\(m\)[/tex] is [tex]\(\frac{5}{4}\)[/tex].

Now we can select the correct option that corresponds to the slope:
[tex]\[ \boxed{\frac{5}{4}} \][/tex]

So the correct answer is [tex]\( \boxed{E} \)[/tex].