What is the product?

[tex]\[
(3a^2b^4)(-8ab^3)
\][/tex]

A. [tex]\(-24ab\)[/tex]

B. [tex]\(-24a^2b^7\)[/tex]

C. [tex]\(-24a^2b^{12}\)[/tex]

D. [tex]\(-24a^3b^7\)[/tex]



Answer :

To find the product of [tex]\(\left(3 a^2 b^4\right)\left(-8 a b^3\right)\)[/tex], we need to multiply the coefficients and add the exponents of like variables.

### Step-by-Step Solution

Step 1: Multiply the coefficients

First, let's multiply the numerical coefficients:
[tex]\[ 3 \times (-8) = -24 \][/tex]

Step 2: Add the exponents of [tex]\(a\)[/tex]

Next, we will add the exponents of [tex]\(a\)[/tex]:
[tex]\[ 2 + 1 = 3 \][/tex]

Step 3: Add the exponents of [tex]\(b\)[/tex]

Now, we add the exponents of [tex]\(b\)[/tex]:
[tex]\[ 4 + 3 = 7 \][/tex]

Step 4: Combine the results

Putting it all together, the product is:
[tex]\[ -24a^3b^7 \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{-24a^3b^7} \][/tex]