What is the product?

[tex](3x-6)(2x^2-7x+1)[/tex]

A. [tex]-12x^2+42x-6[/tex]

B. [tex]-12x^2+21x+6[/tex]

C. [tex]6x^3-33x^2+45x-6[/tex]

D. [tex]6x^3-27x^2-39x+6[/tex]



Answer :

Alright, let's step through the multiplication of the two expressions:

Given:
[tex]\[ (3x - 6)(2x^2 - 7x + 1) \][/tex]

We need to multiply each term in the first polynomial by each term in the second polynomial, and then combine like terms.

1. Distribute [tex]\(3x\)[/tex] to every term in [tex]\(2x^2 - 7x + 1\)[/tex]:
[tex]\[ 3x \cdot 2x^2 = 6x^3 \][/tex]
[tex]\[ 3x \cdot (-7x) = -21x^2 \][/tex]
[tex]\[ 3x \cdot 1 = 3x \][/tex]

2. Distribute [tex]\(-6\)[/tex] to every term in [tex]\(2x^2 - 7x + 1\)[/tex]:
[tex]\[ -6 \cdot 2x^2 = -12x^2 \][/tex]
[tex]\[ -6 \cdot (-7x) = 42x \][/tex]
[tex]\[ -6 \cdot 1 = -6 \][/tex]

Now, combine all these results:
[tex]\[ 6x^3 + (-21x^2) + 3x + (-12x^2) + 42x + (-6) \][/tex]

Combine the like terms:
[tex]\[ 6x^3 + (-21x^2 - 12x^2) + (3x + 42x) + (-6) \][/tex]
[tex]\[ 6x^3 - 33x^2 + 45x - 6 \][/tex]

Thus, the correct product is:
[tex]\[ \boxed{6x^3 - 33x^2 + 45x - 6} \][/tex]