Fill in the table using this function rule.
[tex]\[ y = -2x - 4 \][/tex]

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-6 & 0 \\
\hline
-3 & [ ] \\
\hline
0 & [tex]$\square$[/tex] \\
\hline
3 & [tex]$\square$[/tex] \\
\hline
\end{tabular}



Answer :

Sure! Let's fill in the table by evaluating the function [tex]\( y = -2x - 4 \)[/tex] at the given values of [tex]\( x \)[/tex].

1. For [tex]\( x = -3 \)[/tex]:
- Substitute [tex]\( x = -3 \)[/tex] into the equation:
[tex]\[ y = -2(-3) - 4 = 6 - 4 = 2 \][/tex]
- So, [tex]\( y = 2 \)[/tex] when [tex]\( x = -3 \)[/tex].

2. For [tex]\( x = 0 \)[/tex]:
- Substitute [tex]\( x = 0 \)[/tex] into the equation:
[tex]\[ y = -2(0) - 4 = 0 - 4 = -4 \][/tex]
- So, [tex]\( y = -4 \)[/tex] when [tex]\( x = 0 \)[/tex].

3. For [tex]\( x = 3 \)[/tex]:
- Substitute [tex]\( x = 3 \)[/tex] into the equation:
[tex]\[ y = -2(3) - 4 = -6 - 4 = -10 \][/tex]
- So, [tex]\( y = -10 \)[/tex] when [tex]\( x = 3 \)[/tex].

Now that we have evaluated the function for the given [tex]\( x \)[/tex]-values, we can fill in the table as follows:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline -6 & 0 \\ \hline -3 & 2 \\ \hline 0 & -4 \\ \hline 3 & -10 \\ \hline \end{tabular} \][/tex]