Answered

Use a half-angle identity to find the exact value of [tex]$\tan \frac{5 \pi}{12}$[/tex].

A. [tex]$\frac{2+\sqrt{3}}{2}$[/tex]
B. [tex][tex]$\frac{2-\sqrt{3}}{2}$[/tex][/tex]
C. [tex]$2+\sqrt{3}$[/tex]
D. [tex]$2-\sqrt{3}$[/tex]

Please select the best answer from the choices provided.



Answer :

To find the exact value of [tex]\(\tan \frac{5 \pi}{12}\)[/tex], we can use the half-angle identities. Recall that the half-angle identity for tangent is given by:

[tex]\[ \tan \frac{\theta}{2} = \frac{1 - \cos{\theta}}{\sin{\theta}} \][/tex]

or alternatively,

[tex]\[ \tan \frac{\theta}{2} = \frac{\sin{\theta}}{1 + \cos{\theta}} \][/tex]

Firstly, let's begin by rewriting [tex]\(\frac{5 \pi}{12}\)[/tex] in terms of a known angle using the sum of angles identity. Notice that:

[tex]\[ \frac{5 \pi}{12} = \frac{\pi}{4} + \frac{\pi}{6} \][/tex]

Now we use the tangent addition formula:

[tex]\[ \tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \][/tex]

Let [tex]\( A = \frac{\pi}{4} \)[/tex] and [tex]\( B = \frac{\pi}{6} \)[/tex].
We know:
[tex]\[ \tan \frac{\pi}{4} = 1 \quad \text{and} \quad \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}} \][/tex]

Substitute these into the tangent addition formula:

[tex]\[ \tan \left(\frac{\pi}{4} + \frac{\pi}{6}\right) = \frac{\tan \frac{\pi}{4} + \tan \frac{\pi}{6}}{1 - \tan \frac{\pi}{4} \tan \frac{\pi}{6}} = \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \cdot \frac{1}{\sqrt{3}}} = \frac{1 + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}}} = \frac{\frac{\sqrt{3} + 1}{\sqrt{3}}}{\frac{\sqrt{3} - 1}{\sqrt{3}}} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \][/tex]

We further simplify this by rationalizing the denominator:

[tex]\[ \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1} = \frac{(\sqrt{3} + 1)^2}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \frac{3 + 2\sqrt{3} + 1}{3 - 1} = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3} \][/tex]

Therefore, the exact value of [tex]\(\tan \frac{5 \pi}{12}\)[/tex] is:

[tex]\[ C) 2 + \sqrt{3} \][/tex]