Use completing the square to solve for [tex]\( x \)[/tex] in the equation [tex]\((x-12)(x+4)=9\)[/tex].

A. [tex]\( x = -1 \)[/tex] or [tex]\( 15 \)[/tex]
B. [tex]\( x = 1 \)[/tex] or [tex]\( 7 \)[/tex]
C. [tex]\( x = 4 \pm \sqrt{41} \)[/tex]
D. [tex]\( x = 4 \pm \sqrt{73} \)[/tex]



Answer :

We start with the given equation:

[tex]\[ (x - 12)(x + 4) = 9 \][/tex]

First, we need to expand the left-hand side using the distributive property:

[tex]\[ (x - 12)(x + 4) = x^2 + 4x - 12x - 48 \][/tex]

Simplify this:

[tex]\[ x^2 + 4x - 12x - 48 = x^2 - 8x - 48 \][/tex]

So, the equation becomes:

[tex]\[ x^2 - 8x - 48 = 9 \][/tex]

Next, we move the constant on the right-hand side to the left-hand side by subtracting 9 from both sides:

[tex]\[ x^2 - 8x - 48 - 9 = 0 \][/tex]

Simplify to:

[tex]\[ x^2 - 8x - 57 = 0 \][/tex]

To solve this using the method of completing the square, we first need to isolate the x-terms:

[tex]\[ x^2 - 8x = 57 \][/tex]

Next, we complete the square by adding and subtracting the square of half the coefficient of [tex]\(x\)[/tex]:

Take half of the coefficient of [tex]\(x\)[/tex] (which is -8), square it, and add it to both sides:

[tex]\[ \left( \frac{-8}{2} \right)^2 = 16 \][/tex]

Add 16 to both sides:

[tex]\[ x^2 - 8x + 16 = 57 + 16 \][/tex]

This can be written as:

[tex]\[ (x - 4)^2 = 73 \][/tex]

To solve for [tex]\(x\)[/tex], we take the square root of both sides:

[tex]\[ x - 4 = \pm \sqrt{73} \][/tex]

Therefore, solving for [tex]\(x\)[/tex]:

[tex]\[ x = 4 \pm \sqrt{73} \][/tex]

So the solutions are:

[tex]\[ x = 4 + \sqrt{73} \][/tex]
[tex]\[ x = 4 - \sqrt{73} \][/tex]

These results indicate that the correct answer is:

[tex]\[ x = 4 \pm \sqrt{73} \][/tex]