1. A triangle has the following vertices:

[tex]\[
\begin{array}{l}
A=(-3,-2) \\
B=(-1,3) \\
C=(2,1)
\end{array}
\][/tex]

What are the new vertices of side [tex]\(A^{\prime} C^{\prime}\)[/tex] if the pre-image is dilated by a scale factor of 4?



Answer :

To determine the new vertices of side [tex]\( A'C' \)[/tex] after dilating the triangle with vertices [tex]\( A=(-3, -2) \)[/tex], [tex]\( B=(-1, 3) \)[/tex], and [tex]\( C=(2, 1) \)[/tex] by a scale factor of 4, we need to follow these steps:

1. Identify the original coordinates of the vertices:
- [tex]\( A = (-3, -2) \)[/tex]
- [tex]\( B = (-1, 3) \)[/tex]
- [tex]\( C = (2, 1) \)[/tex]

2. Apply the scale factor to each coordinate:
The formula for dilation by a scale factor [tex]\( k \)[/tex] involves multiplying each coordinate by [tex]\( k \)[/tex]. Here, our scale factor is [tex]\( 4 \)[/tex].

3. Calculate the new coordinates for vertex [tex]\( A' \)[/tex]:
[tex]\[ A' = (4 \times -3, 4 \times -2) = (-12, -8) \][/tex]

4. Calculate the new coordinates for vertex [tex]\( B' \)[/tex]:
As [tex]\( B \)[/tex] is not part of side [tex]\( A'C' \)[/tex], in this question context, we focus on calculating the coordinates of [tex]\( A' \)[/tex] and [tex]\( C' \)[/tex]. However, for completeness:
[tex]\[ B' = (4 \times -1, 4 \times 3) = (-4, 12) \][/tex]

5. Calculate the new coordinates for vertex [tex]\( C' \)[/tex]:
[tex]\[ C' = (4 \times 2, 4 \times 1) = (8, 4) \][/tex]

6. Determine the location of side [tex]\( A'C' \)[/tex]:
After dilating the triangle, the new coordinates for the vertices of side [tex]\( A'C' \)[/tex] are:
[tex]\[ A' = (-12, -8) \][/tex]
[tex]\[ C' = (8, 4) \][/tex]

Thus, the new vertices of side [tex]\( A'C' \)[/tex] are [tex]\( A' = (-12, -8) \)[/tex] and [tex]\( C' = (8, 4) \)[/tex].