Answer :
To convert an area measurement in square centimeters ([tex]\(cm^2\)[/tex]) into liters, we'll need to add another dimension to it, effectively treating it as a volume in cubic centimeters ([tex]\(cm^3\)[/tex]). Typically, in fluid measurements, 1 cubic centimeter is equivalent to 0.001 liters.
Here are the steps to do this conversion:
1. Convert square centimeters to cubic centimeters:
Since [tex]\(cm^2\)[/tex] is an area measurement, we assume that it has a certain depth to convert it into a volume measurement ([tex]\(cm^3\)[/tex]). We'll assume a depth of 1 cm for simplicity.
[tex]\[ \text{Volume in } cm^3 = \text{Area in } cm^2 \times \text{Depth in } cm \][/tex]
Given:
[tex]\[ 300000 \, cm^2 \times 1 \, cm = 300000 \, cm^3 \][/tex]
2. Convert cubic centimeters to liters:
We use the conversion factor where 1 cubic centimeter ([tex]\(cm^3\)[/tex]) equals 0.001 liters (L).
[tex]\[ \text{Volume in liters} = \text{Volume in } cm^3 \times 0.001 \, \left( \frac{L}{cm^3} \right) \][/tex]
Applying this conversion factor:
[tex]\[ 300000 \, cm^3 \times 0.001 \, \left( \frac{L}{cm^3} \right) = 300.0 \, L \][/tex]
Thus, the volume of [tex]\(300000 \, cm^2\)[/tex] when converted into liters is:
[tex]\[ \boxed{300 \, L} \][/tex]
Here are the steps to do this conversion:
1. Convert square centimeters to cubic centimeters:
Since [tex]\(cm^2\)[/tex] is an area measurement, we assume that it has a certain depth to convert it into a volume measurement ([tex]\(cm^3\)[/tex]). We'll assume a depth of 1 cm for simplicity.
[tex]\[ \text{Volume in } cm^3 = \text{Area in } cm^2 \times \text{Depth in } cm \][/tex]
Given:
[tex]\[ 300000 \, cm^2 \times 1 \, cm = 300000 \, cm^3 \][/tex]
2. Convert cubic centimeters to liters:
We use the conversion factor where 1 cubic centimeter ([tex]\(cm^3\)[/tex]) equals 0.001 liters (L).
[tex]\[ \text{Volume in liters} = \text{Volume in } cm^3 \times 0.001 \, \left( \frac{L}{cm^3} \right) \][/tex]
Applying this conversion factor:
[tex]\[ 300000 \, cm^3 \times 0.001 \, \left( \frac{L}{cm^3} \right) = 300.0 \, L \][/tex]
Thus, the volume of [tex]\(300000 \, cm^2\)[/tex] when converted into liters is:
[tex]\[ \boxed{300 \, L} \][/tex]