To find the value of [tex]\( y \)[/tex] in the equation [tex]\( 5x + 2y = 20 \)[/tex] when [tex]\( x = 0.3 \)[/tex], follow these detailed steps:
1. Substitute [tex]\( x = 0.3 \)[/tex] into the equation:
[tex]\( 5(0.3) + 2y = 20 \)[/tex]
2. Calculate the value of the term involving [tex]\( x \)[/tex]:
[tex]\( 5 \times 0.3 = 1.5 \)[/tex]
So the equation becomes:
[tex]\( 1.5 + 2y = 20 \)[/tex]
3. Isolate the term involving [tex]\( y \)[/tex]:
Subtract 1.5 from both sides of the equation:
[tex]\( 2y = 20 - 1.5 \)[/tex]
4. Simplify the right-hand side of the equation:
[tex]\( 20 - 1.5 = 18.5 \)[/tex]
So the equation simplifies to:
[tex]\( 2y = 18.5 \)[/tex]
5. Solve for [tex]\( y \)[/tex]:
Divide both sides of the equation by 2:
[tex]\( y = \frac{18.5}{2} \)[/tex]
Thus,
[tex]\( y = 9.25 \)[/tex]
Therefore, the value of [tex]\( y \)[/tex] when [tex]\( x = 0.3 \)[/tex] is [tex]\( 9.25 \)[/tex]. The correct answer is [tex]\( 9.25 \)[/tex].