To determine which rocket has the highest acceleration, we will use Newton’s second law of motion, which is stated as:
[tex]\[ a = \frac{F}{m} \][/tex]
where:
- [tex]\( a \)[/tex] is the acceleration,
- [tex]\( F \)[/tex] is the force applied,
- [tex]\( m \)[/tex] is the mass of the object.
For each rocket, we will calculate the acceleration using the given mass and the force of 120 N.
### Rocket 1
Mass: 4.25 kg
Force: 120 N
[tex]\[ a_1 = \frac{120}{4.25} \approx 28.24 \text{ m/s}^2 \][/tex]
### Rocket 2
Mass: 3.25 kg
Force: 120 N
[tex]\[ a_2 = \frac{120}{3.25} \approx 36.92 \text{ m/s}^2 \][/tex]
### Rocket 3
Mass: 5.50 kg
Force: 120 N
[tex]\[ a_3 = \frac{120}{5.50} \approx 21.82 \text{ m/s}^2 \][/tex]
### Rocket 4
Mass: 4.50 kg
Force: 120 N
[tex]\[ a_4 = \frac{120}{4.50} \approx 26.67 \text{ m/s}^2 \][/tex]
Next, let’s compare the accelerations:
- Rocket 1: [tex]\( a_1 \approx 28.24 \text{ m/s}^2 \)[/tex]
- Rocket 2: [tex]\( a_2 \approx 36.92 \text{ m/s}^2 \)[/tex]
- Rocket 3: [tex]\( a_3 \approx 21.82 \text{ m/s}^2 \)[/tex]
- Rocket 4: [tex]\( a_4 \approx 26.67 \text{ m/s}^2 \)[/tex]
Among these, the highest acceleration is [tex]\( 36.92 \text{ m/s}^2 \)[/tex], which corresponds to Rocket 2.
Therefore, the rocket with the highest acceleration is:
D. Rocket 2