Four model rockets are launched in a field. The mass of each rocket and the net force acting on it when it launches are given in the table below.

\begin{tabular}{|l|l|l|}
\hline
Rocket & Mass [tex]$(kg)$[/tex] & Force [tex]$(N)$[/tex] \\
\hline
1 & 4.25 & 120 \\
\hline
2 & 3.25 & 120 \\
\hline
3 & 5.50 & 120 \\
\hline
4 & 4.50 & 120 \\
\hline
\end{tabular}

Which rocket has the highest acceleration?

A. Rocket 4

B. Rocket 3

C. Rocket 1

D. Rocket 2



Answer :

To determine which rocket has the highest acceleration, we will use Newton’s second law of motion, which is stated as:

[tex]\[ a = \frac{F}{m} \][/tex]

where:
- [tex]\( a \)[/tex] is the acceleration,
- [tex]\( F \)[/tex] is the force applied,
- [tex]\( m \)[/tex] is the mass of the object.

For each rocket, we will calculate the acceleration using the given mass and the force of 120 N.

### Rocket 1
Mass: 4.25 kg
Force: 120 N

[tex]\[ a_1 = \frac{120}{4.25} \approx 28.24 \text{ m/s}^2 \][/tex]

### Rocket 2
Mass: 3.25 kg
Force: 120 N

[tex]\[ a_2 = \frac{120}{3.25} \approx 36.92 \text{ m/s}^2 \][/tex]

### Rocket 3
Mass: 5.50 kg
Force: 120 N

[tex]\[ a_3 = \frac{120}{5.50} \approx 21.82 \text{ m/s}^2 \][/tex]

### Rocket 4
Mass: 4.50 kg
Force: 120 N

[tex]\[ a_4 = \frac{120}{4.50} \approx 26.67 \text{ m/s}^2 \][/tex]

Next, let’s compare the accelerations:
- Rocket 1: [tex]\( a_1 \approx 28.24 \text{ m/s}^2 \)[/tex]
- Rocket 2: [tex]\( a_2 \approx 36.92 \text{ m/s}^2 \)[/tex]
- Rocket 3: [tex]\( a_3 \approx 21.82 \text{ m/s}^2 \)[/tex]
- Rocket 4: [tex]\( a_4 \approx 26.67 \text{ m/s}^2 \)[/tex]

Among these, the highest acceleration is [tex]\( 36.92 \text{ m/s}^2 \)[/tex], which corresponds to Rocket 2.

Therefore, the rocket with the highest acceleration is:

D. Rocket 2