How many moles of [tex]$Ba \left( NO _3\right)_2$[/tex] are there in 0.25 L of a [tex]$2.00 \, M \, Ba \left( NO _3\right)_2$[/tex] solution?

Use the formula: [tex]\text{Molarity} = \frac{\text{moles of solute}}{\text{liters of solution}}[/tex].

A. 0.13 mol
B. 0.50 mol
C. 2.25 mol
D. 8.0 mol



Answer :

To determine the number of moles of [tex]\( \text{Ba}\left( \text{NO}_3 \right)_2 \)[/tex] in 0.25 liters of a 2.00 M solution, we can use the definition of molarity (M). Molarity is expressed as:

[tex]\[ \text{Molarity} = \frac{\text{moles of solute}}{\text{liters of solution}} \][/tex]

Here, we are given:
- The volume of the solution [tex]\( V = 0.25 \, \text{L} \)[/tex]
- The molarity [tex]\( M = 2.00 \, \text{M} \)[/tex]

The formula to find the number of moles of solute is:

[tex]\[ \text{moles of solute} = \text{Molarity} \times \text{Volume of solution} \][/tex]

Plugging in the given values:

[tex]\[ \text{moles of } \text{Ba}\left( \text{NO}_3 \right)_2 = 2.00 \, \text{M} \times 0.25 \, \text{L} \][/tex]

[tex]\[ \text{moles of } \text{Ba}\left( \text{NO}_3 \right)_2 = 0.50 \, \text{mol} \][/tex]

Therefore, the number of moles of [tex]\( \text{Ba}\left( \text{NO}_3 \right)_2 \)[/tex] in 0.25 liters of a 2.00 M solution is:

[tex]\[ \boxed{0.50 \, \text{mol}} \][/tex]

So, the correct answer is 0.50 mol.