Find the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] intercepts for the equation: [tex]\( y = -6x + 3 \)[/tex]

A. [tex]\(\left(\frac{1}{2}, 0\right)\)[/tex] and [tex]\((0, 3)\)[/tex]
B. [tex]\(\left(\frac{1}{5}, 0\right)\)[/tex] and [tex]\((0, 1)\)[/tex]
C. [tex]\((-2, 0)\)[/tex] and [tex]\((0, 4)\)[/tex]
D. [tex]\((-2, 0)\)[/tex] and [tex]\((0, 6)\)[/tex]



Answer :

To find the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] intercepts for the equation [tex]\(y = -6x + 3\)[/tex], follow these steps:

### 1. Finding the [tex]\(x\)[/tex]-intercept:
The [tex]\(x\)[/tex]-intercept occurs where [tex]\(y = 0\)[/tex].

1. Set [tex]\(y\)[/tex] to 0 in the equation [tex]\(y = -6x + 3\)[/tex]:
[tex]\[ 0 = -6x + 3 \][/tex]

2. Solve for [tex]\(x\)[/tex]:
[tex]\[ 6x = 3 \][/tex]
[tex]\[ x = \frac{3}{6} = \frac{1}{2} \][/tex]

3. Therefore, the [tex]\(x\)[/tex]-intercept is [tex]\(\left(\frac{1}{2}, 0\right)\)[/tex].

### 2. Finding the [tex]\(y\)[/tex]-intercept:
The [tex]\(y\)[/tex]-intercept occurs where [tex]\(x = 0\)[/tex].

1. Set [tex]\(x\)[/tex] to 0 in the equation [tex]\(y = -6x + 3\)[/tex]:
[tex]\[ y = -6(0) + 3 \][/tex]

2. Solve for [tex]\(y\)[/tex]:
[tex]\[ y = 3 \][/tex]

3. Therefore, the [tex]\(y\)[/tex]-intercept is [tex]\((0, 3)\)[/tex].

### Final Answer:
The intercepts for the equation [tex]\(y = -6x + 3\)[/tex] are:
- [tex]\(x\)[/tex]-intercept: [tex]\(\left(\frac{1}{2}, 0\right)\)[/tex]
- [tex]\(y\)[/tex]-intercept: [tex]\((0, 3)\)[/tex]

So the correct option is:
- [tex]\(\left(\frac{1}{2}, 0\right)\)[/tex] and [tex]\((0, 3)\)[/tex]