A dog with a mass of 14 kg has a kinetic energy of 135.5 J. What is the speed of the dog?

A. [tex]$4.4 \, m/s$[/tex]
B. [tex]$2.3 \, m/s$[/tex]
C. [tex]$5.1 \, m/s$[/tex]
D. [tex]$3.2 \, m/s$[/tex]



Answer :

To determine the speed of a dog with a given mass and kinetic energy, we start with the formula for kinetic energy:

[tex]\[ \text{Kinetic Energy (KE)} = \frac{1}{2} m v^2 \][/tex]

where:
- [tex]\( KE \)[/tex] is the kinetic energy,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( v \)[/tex] is the speed.

Given:
- [tex]\( m = 14 \)[/tex] kg (mass of the dog),
- [tex]\( KE = 135.5 \)[/tex] J (kinetic energy of the dog).

We need to solve for [tex]\( v \)[/tex]. To do that, we rearrange the formula to isolate [tex]\( v \)[/tex]:

[tex]\[ v^2 = \frac{2 \cdot KE}{m} \][/tex]

Substitute the known values into the equation:

[tex]\[ v^2 = \frac{2 \cdot 135.5}{14} \][/tex]

Next, simplify the expression inside the square root:

[tex]\[ v^2 = \frac{271}{14} \][/tex]

Calculate the division:

[tex]\[ v^2 = 19.3571 \][/tex]

Now, take the square root of both sides to solve for [tex]\( v \)[/tex]:

[tex]\[ v = \sqrt{19.3571} \][/tex]

[tex]\[ v \approx 4.399675312695569 \][/tex]

Therefore, the speed of the dog is approximately [tex]\( 4.4 \, \text{m/s} \)[/tex].

Thus, the correct answer is:

A. [tex]\( 4.4 \, \text{m/s} \)[/tex]