Points [tex]$\left(-21, \frac{1}{2}\right)$[/tex] and [tex]$(-7, y)$[/tex] have a slope of [tex]$-\frac{1}{7}$[/tex]. Find the [tex]$y$[/tex] coordinate of the point.

A. [tex]$-2$[/tex]
B. [tex]$-\frac{3}{2}$[/tex]
C. 3
D. [tex]$-3$[/tex]



Answer :

To find the [tex]\( y \)[/tex]-coordinate of the point [tex]\((-7, y)\)[/tex] such that the slope between the points [tex]\((-21, \frac{1}{2})\)[/tex] and [tex]\((-7, y)\)[/tex] is [tex]\(-\frac{1}{7}\)[/tex], we proceed with the following steps:

1. Recall the slope formula:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

2. Substitute the known values:
- [tex]\( x_1 = -21 \)[/tex]
- [tex]\( y_1 = \frac{1}{2} \)[/tex]
- [tex]\( x_2 = -7 \)[/tex]
- Given slope ([tex]\( m \)[/tex]) = [tex]\(- \frac{1}{7} \)[/tex]

The slope equation becomes:
[tex]\[ -\frac{1}{7} = \frac{y - \frac{1}{2}}{-7 - (-21)} \][/tex]

3. Simplify the denominator:
[tex]\[ -7 - (-21) = -7 + 21 = 14 \][/tex]

So the slope equation now is:
[tex]\[ -\frac{1}{7} = \frac{y - \frac{1}{2}}{14} \][/tex]

4. Solve for [tex]\( y \)[/tex]:
- Multiply both sides by 14 to clear the fraction:
[tex]\[ 14 \left(-\frac{1}{7}\right) = y - \frac{1}{2} \][/tex]

- Simplify the left side:
[tex]\[ -2 = y - \frac{1}{2} \][/tex]

- Add [tex]\(\frac{1}{2}\)[/tex] to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ -2 + \frac{1}{2} = y \][/tex]

- Convert [tex]\(-2\)[/tex] to a fraction with a common denominator:
[tex]\[ -2 = -\frac{4}{2} \][/tex]

- Perform the addition:
[tex]\[ -\frac{4}{2} + \frac{1}{2} = -\frac{3}{2} \][/tex]

Thus, the [tex]\( y \)[/tex]-coordinate of the point [tex]\((-7, y)\)[/tex] is [tex]\(-\frac{3}{2}\)[/tex].

Therefore, the answer is [tex]\(\boxed{-\frac{3}{2}}\)[/tex].