Drag each tile to the correct box. Not all tiles will be used.

Simplify the expression by arranging the steps in sequence, based on the order of operations:

[tex]\[
\frac{1}{6}(30x + 24) - \frac{1}{7}(63 - 7x)
\][/tex]

Tiles:
1. [tex]\(\left(\frac{1}{6}\right)(30x) + \left(\frac{1}{6}\right)(24) - \left(\frac{1}{7}\right)(63) - \left(\frac{1}{7}\right)(-7x)\)[/tex]
2. [tex]\(5x + x + 4 - 9\)[/tex]
3. [tex]\(5x + 4 - 9 - x\)[/tex]



Answer :

To simplify the expression [tex]\(\frac{1}{6}(30x + 24) - \frac{1}{7}(63 - 7x)\)[/tex], follow the steps in sequence:

1. Distribute [tex]\(\frac{1}{6}\)[/tex] and [tex]\(\frac{1}{7}\)[/tex]:
[tex]\[ \left(\frac{1}{6}\right)(30x) + \left(\frac{1}{6}\right)(24) - \left(\frac{1}{7}\right)(63) - \left(\frac{1}{7}\right)(-7x) \][/tex]

2. Calculate each part:
[tex]\[ 5x + 4 - 9 - (-x) \][/tex]

3. Simplify the signs and combine like terms:
[tex]\[ 5x + 4 - 9 + x \][/tex]

4. Combine the [tex]\(x\)[/tex] terms and constants:
[tex]\[ 5x + x + 4 - 9 \][/tex]

The final simplified expression is:
[tex]\[ 6x - 5 \][/tex]