Solve for [tex]x[/tex]:
[tex]\[ 3x = 6x - 2 \][/tex]

---

Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex]\[ 8612_{\text {twelve}} \div 3E_{\text {twelve}} \][/tex]

Response:
Convert [tex]\(8612_{12}\)[/tex] and [tex]\(3E_{12}\)[/tex] from base twelve to base ten, then perform the division.



Answer :

Sure, let's solve the problem of dividing [tex]\(8612_{12}\)[/tex] by [tex]\(3E_{12}\)[/tex] step-by-step.

### Step 1: Converting from Base 12 to Decimal

First, we need to convert the numbers from base twelve to decimal (base ten).

#### Converting [tex]\(8612_{12}\)[/tex] to Decimal:
Each digit in the number represents a power of 12:
[tex]\[8612_{12} = 8 \times 12^3 + 6 \times 12^2 + 1 \times 12^1 + 2 \times 12^0\][/tex]

Calculate each term:
[tex]\[ 8 \times 12^3 = 8 \times 1728 = 13824 \][/tex]
[tex]\[ 6 \times 12^2 = 6 \times 144 = 864 \][/tex]
[tex]\[ 1 \times 12^1 = 1 \times 12 = 12 \][/tex]
[tex]\[ 2 \times 12^0 = 2 \times 1 = 2 \][/tex]

Now, add them up:
[tex]\[ 8612_{12} = 13824 + 864 + 12 + 2 = 14702_{10} \][/tex]

#### Converting [tex]\(3E_{12}\)[/tex] to Decimal:
Here, [tex]\(E\)[/tex] represents 11 in decimal:
[tex]\[3E_{12} = 3 \times 12^1 + 11 \times 12^0\][/tex]

Calculate each term:
[tex]\[ 3 \times 12^1 = 3 \times 12 = 36 \][/tex]
[tex]\[ 11 \times 12^0 = 11 \times 1 = 11 \][/tex]

Now, add them up:
[tex]\[ 3E_{12} = 36 + 11 = 47_{10} \][/tex]

### Step 2: Perform the Division in Decimal

Next, we need to perform the division with the decimal equivalents:
[tex]\[ 14702_{10} \div 47_{10} \][/tex]

Perform the division:
[tex]\[ 14702 \div 47 = 312 \][/tex]

### Step 3: Convert the Result Back to Base 12

Finally, we need to convert the quotient [tex]\(312_{10}\)[/tex] back to base twelve.

#### Converting [tex]\(312_{10}\)[/tex] to Base 12:
To convert from decimal to base twelve, repeatedly divide the number by 12 and keep track of the remainders.

1. [tex]\(312 \div 12 = 26\)[/tex] remainder [tex]\(0\)[/tex]
2. [tex]\(26 \div 12 = 2\)[/tex] remainder [tex]\(2\)[/tex]
3. [tex]\(2 \div 12 = 0\)[/tex] remainder [tex]\(2\)[/tex]

Reading the remainders from bottom to top, we get:
[tex]\[ 312_{10} = 220_{12} \][/tex]

Therefore, the result of the division [tex]\( 8612_{12} \div 3E_{12} \)[/tex] is [tex]\( 220_{12} \)[/tex].