Select the correct answer.

Solve the following equation for [tex]$x$[/tex]:

[tex]12x^2 - 36x = 0[/tex]

A. [tex]x=0, 3[/tex]
B. [tex]x=0, \frac{1}{3}[/tex]
C. [tex]x=0, -3[/tex]
D. [tex]x=\frac{1}{4}, 3[/tex]



Answer :

To solve the equation [tex]\(12x^2 - 36x = 0\)[/tex], we can follow these steps:

1. Factor the equation:

Notice that we can factor out a common term from each part of the equation:
[tex]\[ 12x^2 - 36x = 12x(x - 3) \][/tex]
This shows that the equation can be rewritten as:
[tex]\[ 12x(x - 3) = 0 \][/tex]

2. Set each factor equal to zero:

For the product of two factors to be zero, at least one of the factors must be zero. Hence, we set each factor to zero and solve for [tex]\(x\)[/tex]:
[tex]\[ 12x = 0 \quad \text{or} \quad x - 3 = 0 \][/tex]

3. Solve each equation:

- Solving [tex]\(12x = 0\)[/tex]:
[tex]\[ x = 0 \][/tex]
- Solving [tex]\(x - 3 = 0\)[/tex]:
[tex]\[ x = 3 \][/tex]

4. Identify the solutions:

The solutions to the equation [tex]\(12x^2 - 36x = 0\)[/tex] are:
[tex]\[ x = 0 \quad \text{and} \quad x = 3 \][/tex]

5. Select the correct answer:

Comparing the solutions [tex]\(x = 0\)[/tex] and [tex]\(x = 3\)[/tex] with the provided options:

- A. [tex]\(x = 0, 3\)[/tex]
- B. [tex]\(x = 0, \frac{1}{3}\)[/tex]
- C. [tex]\(x = 0, -3\)[/tex]
- D. [tex]\(x = \frac{1}{4}, 3\)[/tex]

The correct answer is:
[tex]\[ \boxed{A. \, x = 0, 3} \][/tex]

Other Questions