Janelle wrote the matrix addition below.
[tex]$
\left[\begin{array}{ccc}
3 & -1 & n \\
6 & m-1 & -9 \\
17 & s+1 & 7
\end{array}\right] + \left( \left[\begin{array}{ccc}
-5 & 0 & 4 \\
0 & -12 & 2 \\
1 & -18 & 8
\end{array}\right] + \left[\begin{array}{ccc}
1 & -6 & -7 \\
4 & 0 & 3 \\
14 & -11 & 5
\end{array}\right] \right) = \left[\begin{array}{ccc}
-1 & -7 & 18 \\
10 & 12 & -4 \\
32 & -28 & 20
\end{array}\right]
$[/tex]

Which statement is true?
A. [tex]$(n+4)-7=18$[/tex]
B. [tex]$((m-1)+12)+0=12$[/tex]
C. [tex]$((s+1)-18)+11=-28$[/tex]
D. [tex]$n+(m-1)+(s+1)=-28$[/tex]



Answer :

Let's solve the problem by performing the matrix additions and then finding the values of [tex]\( n \)[/tex], [tex]\( m \)[/tex], and [tex]\( s \)[/tex] before checking which given statements are true.

1. Matrix Addition Calculation:

First, add the second and third matrices:
[tex]\[ \left[\begin{array}{ccc} -5 & 0 & 4 \\ 0 & -12 & 2 \\ 1 & -18 & 8 \end{array}\right] + \left[\begin{array}{ccc} 1 & -6 & -7 \\ 4 & 0 & 3 \\ 14 & -11 & 5 \end{array}\right] = \left[\begin{array}{ccc} -4 & -6 & -3 \\ 4 & -12 & 5 \\ 15 & -29 & 13 \end{array}\right] \][/tex]

Next, add the resulting matrix to the first matrix:
[tex]\[ \left[\begin{array}{ccc} 3 & -1 & n \\ 6 & m-1 & -9 \\ 17 & s+1 & 7 \end{array}\right] + \left[\begin{array}{ccc} -4 & -6 & -3 \\ 4 & -12 & 5 \\ 15 & -29 & 13 \end{array}\right] = \left[\begin{array}{ccc} -1 & -7 & n-3 \\ 10 & m-13 & -4 \\ 32 & s-28 & 20 \end{array}\right] \][/tex]

Now compare this to the resulting matrix given in the problem:
[tex]\[ \left[\begin{array}{ccc} -1 & -7 & 18 \\ 10 & 12 & -4 \\ 32 & -28 & 20 \end{array}\right] \][/tex]

From this, we find:
[tex]\[ n - 3 = 18 \quad \Rightarrow \quad n = 21 \][/tex]
[tex]\[ m - 13 = 12 \quad \Rightarrow \quad m = 25 \][/tex]
[tex]\[ s - 28 = -28 \quad \Rightarrow \quad s = 0 \][/tex]

2. Checking the Statements:

Let's check each given statement with the values we just found:

1. [tex]\((n + 4) - 7 = 18\)[/tex]:
[tex]\[ (21 + 4) - 7 = 25 - 7 = 18 \quad \text{(True)} \][/tex]

2. [tex]\(((m - 1) + 12) + 0 = 12\)[/tex]:
[tex]\[ ((25 - 1) + 12) + 0 = (24 + 12) + 0 = 36 \quad \text{(False)} \][/tex]

3. [tex]\(((s + 1) - 18) + 11 = -28\)[/tex]:
[tex]\[ ((0 + 1) - 18) + 11 = (1 - 18) + 11 = -17 + 11 = -6 \quad \text{(False)} \][/tex]

4. [tex]\(n + (m - 1) + (s + 1) = -28\)[/tex]:
[tex]\[ 21 + (25 - 1) + (0 + 1) = 21 + 24 + 1 = 46 \quad \text{(False)} \][/tex]

Hence, the only true statement is:
[tex]\[ (n + 4) - 7 = 18 \][/tex]