To solve the formula [tex]\( C = 2 \pi r \)[/tex] for the variable [tex]\( r \)[/tex], follow these steps:
1. Start with the given equation:
[tex]\[
C = 2 \pi r
\][/tex]
2. To isolate [tex]\( r \)[/tex], divide both sides of the equation by [tex]\( 2 \pi \)[/tex]:
[tex]\[
\frac{C}{2 \pi} = \frac{2 \pi r}{2 \pi}
\][/tex]
3. On the right-hand side, the [tex]\( 2 \pi \)[/tex] terms cancel out:
[tex]\[
\frac{C}{2 \pi} = r
\][/tex]
4. Thus, the solution for [tex]\( r \)[/tex] is:
[tex]\[
r = \frac{C}{2 \pi}
\][/tex]
So, the radius [tex]\( r \)[/tex] in terms of the circumference [tex]\( C \)[/tex] and the constant [tex]\( \pi \)[/tex] is:
[tex]\[
r = \frac{C}{2 \pi}
\][/tex]