Solve the formula for the specified variable.

[tex]\[
\begin{array}{l}
C = 2 \pi r \\
r =
\end{array}
\][/tex]

Use pi for [tex]\(\pi \)[/tex]. Put a space after [tex]\(\pi \)[/tex] and before the variables.



Answer :

To solve the formula [tex]\( C = 2 \pi r \)[/tex] for the variable [tex]\( r \)[/tex], follow these steps:

1. Start with the given equation:
[tex]\[ C = 2 \pi r \][/tex]

2. To isolate [tex]\( r \)[/tex], divide both sides of the equation by [tex]\( 2 \pi \)[/tex]:
[tex]\[ \frac{C}{2 \pi} = \frac{2 \pi r}{2 \pi} \][/tex]

3. On the right-hand side, the [tex]\( 2 \pi \)[/tex] terms cancel out:
[tex]\[ \frac{C}{2 \pi} = r \][/tex]

4. Thus, the solution for [tex]\( r \)[/tex] is:
[tex]\[ r = \frac{C}{2 \pi} \][/tex]

So, the radius [tex]\( r \)[/tex] in terms of the circumference [tex]\( C \)[/tex] and the constant [tex]\( \pi \)[/tex] is:
[tex]\[ r = \frac{C}{2 \pi} \][/tex]