Answer :
To determine the value of [tex]\(a\)[/tex], we need to sum up the given quantities:
1. [tex]\(5\)[/tex] units
2. [tex]\(5 \frac{1}{3}\)[/tex] units
3. [tex]\(162\)[/tex] units
4. [tex]\(7\)[/tex] units
Let's break these quantities down and add them step-by-step:
### Step-by-Step Solution:
1. First Quantity:
[tex]\[ 5 \, \text{units} \][/tex]
2. Second Quantity:
[tex]\[ 5 \frac{1}{3} \, \text{units} \quad \text{can be written as a decimal} \quad 5 + \frac{1}{3} = 5.3333\ldots \, \text{units} \][/tex]
3. Third Quantity:
[tex]\[ 162 \, \text{units} \][/tex]
4. Fourth Quantity:
[tex]\[ 7 \, \text{units} \][/tex]
Next, sum all these quantities:
[tex]\[ 5 + 5.3333\ldots + 162 + 7 \][/tex]
Combine them step-by-step:
1. Add the first two quantities:
[tex]\[ 5 + 5.3333\ldots = 10.3333\ldots \, \text{units} \][/tex]
2. Add the third quantity:
[tex]\[ 10.3333\ldots + 162 = 172.3333\ldots \, \text{units} \][/tex]
3. Add the fourth quantity:
[tex]\[ 172.3333\ldots + 7 = 179.3333\ldots \, \text{units} \][/tex]
Therefore, the total value of [tex]\(a\)[/tex] is:
[tex]\[ 179.3333\ldots \, \text{units} \][/tex]
When rounded to a more convenient form, it can be expressed as approximately [tex]\(179.33\)[/tex] units.
So, the value of [tex]\(a\)[/tex] is:
[tex]\[ 179.33333333333334 \][/tex]
1. [tex]\(5\)[/tex] units
2. [tex]\(5 \frac{1}{3}\)[/tex] units
3. [tex]\(162\)[/tex] units
4. [tex]\(7\)[/tex] units
Let's break these quantities down and add them step-by-step:
### Step-by-Step Solution:
1. First Quantity:
[tex]\[ 5 \, \text{units} \][/tex]
2. Second Quantity:
[tex]\[ 5 \frac{1}{3} \, \text{units} \quad \text{can be written as a decimal} \quad 5 + \frac{1}{3} = 5.3333\ldots \, \text{units} \][/tex]
3. Third Quantity:
[tex]\[ 162 \, \text{units} \][/tex]
4. Fourth Quantity:
[tex]\[ 7 \, \text{units} \][/tex]
Next, sum all these quantities:
[tex]\[ 5 + 5.3333\ldots + 162 + 7 \][/tex]
Combine them step-by-step:
1. Add the first two quantities:
[tex]\[ 5 + 5.3333\ldots = 10.3333\ldots \, \text{units} \][/tex]
2. Add the third quantity:
[tex]\[ 10.3333\ldots + 162 = 172.3333\ldots \, \text{units} \][/tex]
3. Add the fourth quantity:
[tex]\[ 172.3333\ldots + 7 = 179.3333\ldots \, \text{units} \][/tex]
Therefore, the total value of [tex]\(a\)[/tex] is:
[tex]\[ 179.3333\ldots \, \text{units} \][/tex]
When rounded to a more convenient form, it can be expressed as approximately [tex]\(179.33\)[/tex] units.
So, the value of [tex]\(a\)[/tex] is:
[tex]\[ 179.33333333333334 \][/tex]