Given that [tex]\tan^2 \theta = \frac{3}{8}[/tex], what is the value of [tex]\sec \theta[/tex]?

A. [tex]\pm \sqrt{\frac{8}{3}}[/tex]

B. [tex]\pm \sqrt{\frac{11}{8}}[/tex]

C. [tex]\frac{11}{8}[/tex]

D. [tex]\frac{8}{3}[/tex]



Answer :

To find the value of [tex]\(\sec \theta\)[/tex], given that [tex]\(\tan^2 \theta = \frac{3}{8}\)[/tex], let's follow a step-by-step solution:

1. Identify the given information:
[tex]\(\tan^2 \theta = \frac{3}{8}\)[/tex]

2. Calculate [tex]\(\tan \theta\)[/tex]:
[tex]\[\tan \theta = \sqrt{\tan^2 \theta} = \sqrt{\frac{3}{8}}\][/tex]

3. Use the trigonometric identity involving sec and tan:
Recall that the identity [tex]\(\sec^2 \theta = 1 + \tan^2 \theta\)[/tex] relates secant and tangent.

4. Substitute [tex]\(\tan^2 \theta\)[/tex] into the identity:
[tex]\[\sec^2 \theta = 1 + \frac{3}{8}\][/tex]

5. Simplify the expression:
[tex]\[1 + \frac{3}{8} = \frac{8}{8} + \frac{3}{8} = \frac{11}{8}\][/tex]
Thus, we find:
[tex]\[\sec^2 \theta = \frac{11}{8}\][/tex]

6. Solve for [tex]\(\sec \theta\)[/tex]:
[tex]\[\sec \theta = \pm \sqrt{\sec^2 \theta} = \pm \sqrt{\frac{11}{8}}\][/tex]

Therefore, the value of [tex]\(\sec \theta\)[/tex] is [tex]\(\pm \sqrt{\frac{11}{8}}\)[/tex].

So, the correct answer is:
[tex]\(\pm \sqrt{\frac{11}{8}}\)[/tex]