Solve this inequality for [tex]x[/tex].

[tex]\[ 81 - 1 \frac{1}{5} x \leq 55 \][/tex]

A. [tex]x \geq 21 \frac{2}{3}[/tex]
B. [tex]x \leq 113 \frac{1}{3}[/tex]
C. [tex]x \geq 5 \frac{1}{5}[/tex]
D. [tex]x \leq -21 \frac{2}{3}[/tex]



Answer :

To solve the inequality [tex]\(81 - 1 \frac{1}{5} x \leq 55\)[/tex], let's follow a step-by-step process:

1. Rewrite the Inequality:
The inequality can be rewritten to make it easier to solve. Notice that [tex]\(1 \frac{1}{5}\)[/tex] is equivalent to [tex]\(1 + \frac{1}{5}\)[/tex] or [tex]\(\frac{6}{5}\)[/tex].

Therefore, the inequality is:
[tex]\[ 81 - \frac{6}{5} x \leq 55 \][/tex]

2. Isolate the [tex]\(x\)[/tex] Term:
To isolate the [tex]\(x\)[/tex] term, subtract 81 from both sides of the inequality.
[tex]\[ 81 - \frac{6}{5} x - 81 \leq 55 - 81 \][/tex]
Simplify the terms:
[tex]\[ -\frac{6}{5} x \leq -26 \][/tex]

3. Solve for [tex]\(x\)[/tex]:
Next, solve for [tex]\(x\)[/tex] by dividing both sides of the inequality by [tex]\(-\frac{6}{5}\)[/tex]. Remember, when dividing by a negative number, the direction of the inequality sign flips.
[tex]\[ x \geq \frac{-26}{-\frac{6}{5}} \][/tex]

4. Simplify the Fraction:
Simplify the fraction [tex]\(\frac{-26}{-\frac{6}{5}}\)[/tex]:
[tex]\[ x \geq \frac{26}{\frac{6}{5}} \][/tex]
To divide by a fraction, multiply by its reciprocal:
[tex]\[ x \geq 26 \times \frac{5}{6} \][/tex]
Simplify the multiplication:
[tex]\[ x \geq \frac{130}{6} \][/tex]
Further simplify the fraction:
[tex]\[ x \geq 21 \frac{2}{3} \][/tex]

Therefore, the solution to the inequality [tex]\(81 - 1 \frac{1}{5} x \leq 55\)[/tex] is [tex]\(x \geq 21 \frac{2}{3}\)[/tex].

The correct option is: A. [tex]\(x \geq 21 \frac{2}{3}\)[/tex]