Question 9 of 10

For what values of [tex]$b$[/tex] will [tex]$F(x) = \log_b x$[/tex] be a decreasing function?

A. [tex][tex]$b \ \textless \ 0$[/tex][/tex]
B. [tex]$0 \ \textless \ b \ \textless \ 1$[/tex]
C. [tex]$b \ \textgreater \ 0$[/tex]
D. [tex][tex]$0 \ \textgreater \ b \ \textgreater \ -1$[/tex][/tex]



Answer :

To determine the values of [tex]\( b \)[/tex] for which the function [tex]\( F(x) = \log_b(x) \)[/tex] is a decreasing function, we need to understand the behavior of logarithmic functions.

1. A logarithmic function [tex]\( F(x) = \log_b(x) \)[/tex] is defined only for positive values of [tex]\( b \)[/tex] other than 1 ([tex]\( b > 0 \)[/tex] and [tex]\( b \neq 1 \)[/tex]).
2. The behavior of the function depends on the base [tex]\( b \)[/tex]:
- If [tex]\( b > 1 \)[/tex], the function [tex]\( F(x) = \log_b(x) \)[/tex] is an increasing function. As [tex]\( x \)[/tex] increases, [tex]\( \log_b(x) \)[/tex] also increases.
- If [tex]\( 0 < b < 1 \)[/tex], the function [tex]\( F(x) = \log_b(x) \)[/tex] is a decreasing function. As [tex]\( x \)[/tex] increases, [tex]\( \log_b(x) \)[/tex] decreases.

To summarize, for [tex]\( F(x) = \log_b(x) \)[/tex] to be a decreasing function, the base [tex]\( b \)[/tex] must be between 0 and 1. Therefore, the correct condition is:

[tex]\[ 0 < b < 1 \][/tex]

This corresponds to option B.

Thus, the correct answer is:

B. [tex]\( 0 < b < 1 \)[/tex]