Kaya collects the data shown in the table.

\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Quantity } & Value \\
\hline Voltage & 6.0 V \\
\hline Current & 0.3 A \\
\hline Resistance & \\
\hline
\end{tabular}

What is the resistance in the circuit?

A. [tex]$0.05 \Omega$[/tex]

B. [tex]$1.8 \Omega$[/tex]

C. [tex]$5.7 \Omega$[/tex]

D. [tex]$20 \Omega$[/tex]



Answer :

To find the resistance in the circuit, we will use Ohm's Law. Ohm's Law states that the relationship between voltage [tex]\( V \)[/tex], current [tex]\( I \)[/tex], and resistance [tex]\( R \)[/tex] is given by the formula:

[tex]\[ V = I \times R \][/tex]

We need to solve for [tex]\( R \)[/tex], which is the resistance. Rearranging the formula to solve for [tex]\( R \)[/tex] gives us:

[tex]\[ R = \frac{V}{I} \][/tex]

From the table, we know the following values:
- Voltage [tex]\( V = 6.0 \)[/tex] volts
- Current [tex]\( I = 0.3 \)[/tex] amperes

Plugging these values into the formula:

[tex]\[ R = \frac{6.0 \text{ volts}}{0.3 \text{ amperes}} \][/tex]

Calculating this:

[tex]\[ R = 20 \text{ ohms} \][/tex]

Therefore, the resistance in the circuit is:

[tex]\[ 20 \Omega \][/tex]

So the correct answer is:

[tex]\[ \boxed{20 \Omega} \][/tex]