To find the resistance in the circuit, we will use Ohm's Law. Ohm's Law states that the relationship between voltage [tex]\( V \)[/tex], current [tex]\( I \)[/tex], and resistance [tex]\( R \)[/tex] is given by the formula:
[tex]\[
V = I \times R
\][/tex]
We need to solve for [tex]\( R \)[/tex], which is the resistance. Rearranging the formula to solve for [tex]\( R \)[/tex] gives us:
[tex]\[
R = \frac{V}{I}
\][/tex]
From the table, we know the following values:
- Voltage [tex]\( V = 6.0 \)[/tex] volts
- Current [tex]\( I = 0.3 \)[/tex] amperes
Plugging these values into the formula:
[tex]\[
R = \frac{6.0 \text{ volts}}{0.3 \text{ amperes}}
\][/tex]
Calculating this:
[tex]\[
R = 20 \text{ ohms}
\][/tex]
Therefore, the resistance in the circuit is:
[tex]\[
20 \Omega
\][/tex]
So the correct answer is:
[tex]\[
\boxed{20 \Omega}
\][/tex]