The table of values forms a quadratic function [tex]$f(x)$[/tex].

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-2 & 48 \\
\hline
-1 & 50 \\
\hline
0 & 48 \\
\hline
1 & 42 \\
\hline
2 & 32 \\
\hline
3 & 18 \\
\hline
4 & 0 \\
\hline
\end{tabular}

What is the equation that represents [tex]$f(x)$[/tex]?



Answer :

To find the quadratic function [tex]\( f(x) \)[/tex] that best fits the given data points:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -2 & 48 \\ \hline -1 & 50 \\ \hline 0 & 48 \\ \hline 1 & 42 \\ \hline 2 & 32 \\ \hline 3 & 18 \\ \hline 4 & 0 \\ \hline \end{array} \][/tex]

we can model the function in the quadratic form:

[tex]\[ f(x) = ax^2 + bx + c \][/tex]

Here are the determined coefficients for this quadratic equation:

- Coefficient [tex]\( a \)[/tex]: [tex]\(-2.000000000000003\)[/tex]
- Coefficient [tex]\( b \)[/tex]: [tex]\(-4.000000000000001\)[/tex]
- Constant term [tex]\( c \)[/tex]: [tex]\(48.000000000000036\)[/tex]

So, substituting these coefficients into the general quadratic form, we get the equation:

[tex]\[ f(x) = -2.000000000000003x^2 + -4.000000000000001x + 48.000000000000036 \][/tex]

For simplicity, we can round the coefficients to make the equation more readable while preserving its accuracy:

[tex]\[ f(x) = -2x^2 - 4x + 48 \][/tex]

Therefore, the equation that represents the function [tex]\( f(x) \)[/tex] fitting the given data points is:

[tex]\[ f(x) = -2x^2 - 4x + 48 \][/tex]