What is the inverse of the function [tex]$f(x)=\frac{1}{4} x-12$[/tex]?

A. [tex]h(x)=48 x-4[/tex]
B. [tex]h(x)=48 x+4[/tex]
C. [tex]h(x)=4 x-48[/tex]
D. [tex]h(x)=4 x+48[/tex]



Answer :

To find the inverse of the function [tex]\( f(x) = \frac{1}{4}x - 12 \)[/tex], we follow these steps:

1. Express [tex]\( y = f(x) \)[/tex]:
[tex]\[ y = \frac{1}{4}x - 12 \][/tex]

2. Switch the roles of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to solve for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ x = \frac{1}{4}y - 12 \][/tex]

3. Solve for [tex]\( y \)[/tex]:

First, isolate the term involving [tex]\( y \)[/tex]:
[tex]\[ x + 12 = \frac{1}{4}y \][/tex]

Next, multiply both sides of the equation by 4 to clear the fraction:
[tex]\[ 4(x + 12) = y \][/tex]

Simplify the expression:
[tex]\[ y = 4x + 48 \][/tex]

4. Therefore, the inverse function [tex]\( h(x) \)[/tex] is:
[tex]\[ h(x) = 4x + 48 \][/tex]

This matches the fourth choice given in the problem. Thus, the inverse function is:
[tex]\[ h(x) = 4x + 48 \][/tex]